具体实施方式:
[0026]Repeat use of reference characters in the present specification and drawings is intended to represent the same or analogous features or elements of the present invention.
DETAILED DESCRIPTION
[0027]Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
[0028]As used herein, the terms “first”, “second”, and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components. In addition, the terms “upstream” and “downstream” refer to the relative direction with respect to fluid flow in a fluid pathway. For example, “upstream” refers to the direction from which the fluid flows, and “downstream” refers to the direction to which the fluid flows. Furthermore, as used herein, terms of approximation, such as “approximately,”“substantially,” or “about,” refer to being within a ten percent margin of error.
[0029]An additive manufacturing machine is generally provided which includes a plurality of subsystems, such as a condensate evacuation subsystem for removing byproducts of the additive manufacturing products near a powder bed, a closed loop subsystem for cleaning contaminants from sensitive machine components, and/or an electronics cooling subsystem for cooling an electronics compartment. Each subsystem may include a dedicated gas circulation loop that is operably coupled to a gas circulation device for urging a clean flow of gas to each of the subsystems to perform a particular function.
[0030]FIG. 1 shows an example of one embodiment of a large-scale additive manufacturing apparatus 300 according to the present invention. The apparatus 300 comprises a positioning system 301, a build unit 302 comprising an irradiation emission directing device 303, a laminar gas flow zone 307, and a build plate (not shown in this view) beneath an object being built 309. The maximum build area is defined by the positioning system 301, instead of by a powder bed as with conventional systems, and the build area for a particular build can be confined to a build envelope 308 that may be dynamically built up along with the object. The gantry 301 has an x crossbeam 304 that moves the build unit 302 in the x direction. There are two z crossbeams 305A and 305B that move the build unit 302 and the x crossbeam 304 in the z direction. The x cross beam 304 and the build unit 302 are attached by a mechanism 306 that moves the build unit 302 in the y direction. In this illustration of one embodiment of the invention, the positioning system 301 is a gantry, but the present invention is not limited to using a gantry. In general, the positioning system used in the present invention may be any multidimensional positioning system such as a delta robot, cable robot, robot arm, etc. The irradiation emission directing device 303 may be independently moved inside of the build unit 302 by a second positioning system (not shown). The atmospheric environment outside the build unit, i.e. the “build environment,” or “containment zone,” is typically controlled such that the oxygen content is reduced relative to typical ambient air, and so that the environment is at reduced pressure.
[0031]There may also be an irradiation source that, in the case of a laser source, originates the photons comprising the laser beam irradiation is directed by the irradiation emission directing device. When the irradiation source is a laser source, then the irradiation emission directing device may be, for example, a galvo scanner, and the laser source may be located outside the build environment. Under these circumstances, the laser irradiation may be transported to the irradiation emission directing device by any suitable means, for example, a fiber-optic cable. According to an exemplary embodiment, irradiation emission directing device uses an optical control unit for directing the laser beam. An optical control unit may comprise, for example, optical lenses, deflectors, mirrors, and/or beam splitters. Advantageously, a telecentric lens may be used. When a large-scale additive manufacturing apparatus according to an embodiment of the present invention is in operation, if the irradiation emission directing devices directs a laser beam, then generally it is advantageous to include a gasflow device providing substantially laminar gas flow to a gasflow zone as illustrated in FIG. 1, 307 and FIG. 2, 404.
[0032]When the irradiation source is an electron source, then the electron source originates the electrons that comprise the e-beam that is directed by the irradiation emission directing device. An e-beam is a well-known source of irradiation. When the source is an electron source, then it is important to maintain sufficient vacuum in the space through which the e-beam passes. Therefore, for an e-beam, there is no gas flow across the gasflow zone (shown, for example at FIG. 1, 307). When the irradiation source is an electron source, then the irradiation emission directing device may be, for example, an electronic control unit which may comprise, for example, deflector coils, focusing coils, or similar elements.
[0033]The apparatus 300 allows for a maximum angle of the beam to be a relatively small angle θ2 to build a large part, because (as illustrated in FIG. 1) the build unit 302 can be moved to a new location to build a new part of the object being formed 309. When the build unit is stationary, the point on the powder that the energy beam touches when θ2 is 0 defines the center of a circle in the xy plane (the direction of the beam when θ2 is approximately 0 defines the z direction), and the most distant point from the center of the circle where the energy beam touches the powder defines a point on the outer perimeter of the circle. This circle defines the beam's scan area, which may be smaller than the smallest cross sectional area of the object being formed (in the same plane as the beam's scan area). There is no particular upper limit on the size of the object relative to the beam's scan area.
[0034]In some embodiments, the recoater used is a selective recoater. One embodiment is illustrated in FIGS. 2 through 5.
[0035]FIG. 2 shows a build unit 400 comprising an irradiation emission directing device 401, a gasflow device 403 with a pressurized outlet portion 403A and a vacuum inlet portion 403B providing gas flow to a gasflow zone 404, and a recoater 405. Above the gasflow zone 404 there is an enclosure 418 containing an inert environment 419. The recoater 405 has a hopper 406 comprising a back plate 407 and a front plate 408. The recoater 405 also has at least one actuating element 409, at least one gate plate 410, a recoater blade 411, an actuator 412, and a recoater arm 413. The recoater is mounted to a mounting plate 420. FIG. 2 also shows a build envelope 414 that may be built by, for example, additive manufacturing or Mig/Tig welding, an object being formed 415, and powder 416 contained in the hopper 405 used to form the object 415. In this particular embodiment, the actuator 412 activates the actuating element 409 to pull the gate plate 410 away from the front plate 408. In an embodiment, the actuator 412 may be, for example, a pneumatic actuator, and the actuating element 409 may be a bidirectional valve. In an embodiment, the actuator 412 may be, for example, a voice coil, and the actuating element 409 may be a spring. There is also a hopper gap 417 between the front plate 408 and the back plate 407 that allows powder to flow when a corresponding gate plate is pulled away from the powder gate by an actuating element. The powder 416, the back plate 407, the front plate 408, and the gate plate 410 may all be the same material. Alternatively, the back plate 407, the front plate 408, and the gate plate 410 may all be the same material, and that material may be one that is compatible with the powder material, such as cobalt-chrome. In this particular embodiment, the gas flow in the gasflow zone 404 flows in the y direction, but it does not have to. The recoater blade 411 has a width in the x direction. The direction of the irradiation emission beam when θ2 is approximately 0 defines the z direction in this view. The gas flow in the gasflow zone 404 may be substantially laminar. The irradiation emission directing device 401 may be independently movable by a second positioning system (not shown). FIG. 2 shows the gate plate 410 in the closed position.
[0036]FIG. 3 shows the build unit of FIG. 2, with the gate plate 410 in the open position (as shown by element 510) and actuating element 509. Powder in the hopper is deposited to make fresh powder layer 521, which is smoothed over by the recoater blade 511 to make a substantially even powder layer 522. In some embodiments, the substantially even powder layer may be irradiated at the same time that the build unit is moving, which would allow for continuous operation of the build unit and thus faster production of the object.
[0037]FIG. 4 shows a top down view of the build unit of FIG. 2. For simplicity, the object and the walls are not shown here. The build unit 600 has an irradiation emission directing device 601, an attachment plate 602 attached to the gasflow device 603, hopper 606, and recoater arm 611. The gasflow device has a gas outlet portion 603A and a gas inlet portion 603B. Within the gasflow device 603 there is a gasflow zone 604. The gasflow device 603 provides laminar gas flow within the gasflow zone 604. There is also a recoater 605 with a recoater arm 611, actuating elements 612A, 612B, and 612C, and gate plates 610A, 610B, and 610C. The recoater 605 also has a hopper 606 with a back plate 607 and front plate 608. In this particular illustration of one embodiment of the present invention, the hopper is divided into three separate compartments containing three different materials 609A, 609B, and 609C. There are also gas pipes 613A and 613B that feed gas out of and into the gasflow device 603.
[0038]FIG. 5 shows a top down view of a recoater according to one embodiment, where the recoater has a hopper 700 with only a single compartment containing a powder material 701. There are three gate plates 702A, 702B, and 702C that are controlled by three actuating elements 703A, 703B, and 703C. There is also a recoater arm 704 and a wall 705. When the recoater passes over a region that is within the wall, such as indicated by 707, the corresponding gate plate 702C may be held open to deposit powder in that region 707. When the recoater passes over a region that is outside of the wall, such as the region indicated as 708, the corresponding gate plate 702C is closed by its corresponding actuating element 703C, to avoid depositing powder outside the wall, which could potentially waste the powder. Within the wall 705, the recoater is able to deposit discrete lines of powder, such as indicated by 706. The recoater blade (not shown in this view) smooths out the powder deposited.
[0039]Advantageously, a selective recoater according to embodiments of the apparatus and methods described herein allows precise control of powder deposition using powder deposition device (e.g. a hopper) with independently controllable powder gates as illustrated, for example, in FIG. 4, 606, 610A, 610B, and 610C and FIG. 5, 702A, 702B, and 702C. The powder gates are controlled by at least one actuating element which may be, for instance, a bidirectional valve or a spring (as illustrated, for example, in FIG. 2, 409. Each powder gate can be opened and closed for particular periods of time, in particular patterns, to finely control the location and quantity of powder deposition (see, for example, FIG. 4). The hopper may contain dividing walls so that it comprises multiple chambers, each chamber corresponding to a powder gate, and each chamber containing a particular powder material (see, for example, FIG. 4, and 609A, 609B, and 609C). The powder materials in the separate chambers may be the same, or they may be different. Advantageously, each powder gate can be made relatively small so that control over the powder deposition is as fine as possible. Each powder gate has a width that may be, for example, no greater than about 2 inches, or more preferably no greater than about ¼ inch. In general, the smaller the powder gate, the greater the powder deposition resolution, and there is no particular lower limit on the width of the powder gate. The sum of the widths of all powder gates may be smaller than the largest width of the object, and there is no particular upper limit on the width of the object relative to the sum of the widths of the power gates. Advantageously, a simple on/off powder gate mechanism according to one embodiment is simpler and thus less prone to malfunctioning. It also advantageously permits the powder to come into contact with fewer parts, which reduces the possibility of contamination. Advantageously, a recoater according to an embodiment of the present invention can be used to build a much larger object. For example, the largest xy cross sectional area of the recoater may be smaller than the smallest cross sectional area of the object, and there is no particular upper limit on the size of the object relative to the recoater. Likewise, the width of the recoater blade may smaller than the smallest width of the object, and there is no particular upper limit on the width of the object relative to the recoater blade. After the powder is deposited, a recoater blade can be passed over the powder to create a substantially even layer of powder with a particular thickness, for example about 50 microns, or preferably about 30 microns, or still more preferably about 20 microns. Another feature of some embodiments of the present invention is a force feedback loop. There can be a sensor on the selective recoater that detects the force on the recoater blade. During the manufacturing process, if there is a time when the expected force on the blade does not substantially match the detected force, then control over the powder gates may be modified to compensate for the difference. For instance, if a thick layer of powder is to be provided, but the blade experiences a relatively low force, this scenario may indicate that the powder gates are clogged and thus dispensing powder at a lower rate than normal. Under these circumstances, the powder gates can be opened for a longer period of time to deposit sufficient powder. On the other hand, if the blade experiences a relatively high force, but the layer of powder provided is relatively thin, this may indicate that the powder gates are not being closed properly, even when the actuators are supposed to close them. Under these circumstances, it may be advantageous to pause the build cycle so that the system can be diagnosed and repaired, so that the build may be continued without comprising part quality. Another feature of some embodiments of the present invention is a camera for monitoring the powder layer thickness. Based on the powder layer thickness, the powder gates can be controlled to add more or less powder.
[0040]In addition, an apparatus according to an embodiment of the present invention may have a controlled low oxygen build environment with two or more gas zones to facilitate a low oxygen environment. The first gas zone is positioned immediately over the work surface. The second gas zone may be positioned above the first gas zone, and may be isolated from the larger build environment by an enclosure. For example, in FIG. 2 element 404 constitutes the first gas zone, element 419 constitutes the second gas zone contained by the enclosure 418, and the environment around the entire apparatus is the controlled low oxygen build environment. In the embodiment illustrated in FIG. 2, the first gasflow zone 404 is essentially the inner volume of the gasflow device 403, i.e. the volume defined by the vertical (xz plane) surfaces of the inlet and outlet portions (403A and 403B), and by extending imaginary surfaces from the respective upper and lower edges of the inlet portion to the upper and lower edges of the outlet portion in the xy plane. When the irradiation emission directing device directs a laser beam, then the gasflow device preferably provides substantially laminar gas flow across the first gas zone. This facilitates removal of the effluent plume caused by laser melting. Accordingly, when a layer of powder is irradiated, smoke, condensates, and other impurities flow into the first gasflow zone, and are transferred away from the powder and the object being formed by the laminar gas flow. The smoke, condensates, and other impurities flow into the low-pressure gas outlet portion and are eventually collected in a filter, such as a HEPA filter. By maintaining laminar flow, the aforementioned smoke, condensates and other impurities can be efficiently removed while also rapidly cooling melt pool(s) created by the laser, without disturbing the powder layer, resulting in higher quality parts with improved metallurgical characteristics. In an aspect, the gas flow in the gasflow volume is at about 3 meters per second. The gas may flow in either the x or y direction.
[0041]The oxygen content of the second controlled atmospheric environment is generally approximately equal to the oxygen content of the first controlled atmospheric environment, although it doesn't have to be. The oxygen content of both controlled atmospheric environments is preferably relatively low. For example, it may be 1% or less, or more preferably 0.5% or less, or still more preferably 0.1% or less. The non-oxygen gases may be any suitable gas for the process. For instance, nitrogen obtained by separating ambient air may be a convenient option for some applications. Some applications may use other gases such as helium, neon, or argon. An advantage of the invention is that it is much easier to maintain a low-oxygen environment in the relatively small volume of the first and second controlled atmospheric environments. In prior art systems and methods, the larger environment around the entire apparatus and object must be tightly controlled to have a relatively low oxygen content, for instance 1% or less. This can be time-consuming, expensive, and technically difficult. Thus it is preferable that only relatively smaller volumes require such relatively tight atmospheric control. Therefore, in the present invention, the first and second controlled atmospheric environments may be, for example, 100 times smaller in terms of volume than the build environment. The first gas zone, and likewise the gasflow device, may have a largest xy cross sectional area that is smaller than the smallest cross sectional area of the object. There is no particular upper limit on the size of the object relative to the first gas zone and/or the gasflow device. Advantageously, the irradiation emission beam (illustrated, for example, as 402 and 502) fires through the first and second gas zones, which are relatively low oxygen zones. And when the first gas zone is a laminar gasflow zone with substantially laminar gas flow, the irradiation emission beam is a laser beam with a more clear line of sight to the object, due to the aforementioned efficient removal of smoke, condensates, and other contaminants or impurities.
[0042]One advantage of the present invention is that, in some embodiments, the build plate may be vertically stationary (i.e. in the z direction). This permits the build plate to support as much material as necessary, unlike the prior art methods and systems, which require some mechanism to raise and lower the build plate, thus limiting the amount of material that can be used. Accordingly, the apparatus of the present invention is particularly suited for manufacturing an object within a large (e.g., greater than 1 m3) build envelope. For instance, the build envelope may have a smallest xy cross sectional area greater than 500 mm2, or preferably greater than 750 mm2, or more preferably greater than 1 m2. The size of the build envelope is not particularly limited. For instance, it could have a smallest cross sectional area as large as 100 m2. Likewise, the formed object may have a largest xy cross sectional area that is no less than about 500 mm2, or preferably no less than about 750 mm2, or still more preferably no less than about 1 m2. There is no particular upper limit on the size of the object. For example, the object's smallest xy cross sectional area may be as large as 100 m2. Because the build envelope retains unfused powder about the object, it can be made in a way that minimizes unfused powder (which can potentially be wasted powder) within a particular build, which is particularly advantageous for large builds. When building large objects within a dynamically grown build envelope, it may be advantageous to build the envelope using a different build unit, or even a different build method altogether, than is used for the object. For example, it may be advantageous to have one build unit that directs an e-beam, and another build unit that directs a laser beam. With respect to the build envelope, precision and quality of the envelope may be relatively unimportant, such that rapid build techniques are advantageously used. In general, the build envelope may be built by any suitable means, for instance by Mig or Tig welding, or by laser powder deposition. If the wall is built by additive manufacturing, then a different irradiation emission directing device can be used to build than wall than is used to build the object. This is advantageous because building the wall may be done more quickly with a particular irradiation emission directing device and method, whereas a slower and more accurate directing device and method may be desired to build the object. For example, the wall may be built from a rapidly built using a different material from the object, which may require a different build method. Ways to tune accuracy vs. speed of a build are well known in the art, and are not recited here.
[0043]For example, as shown in FIG. 6, the systems and methods of the present invention may use two or more build units to build one or more object(s). The number of build units, objects, and their respective sizes are only limited by the physical spatial configuration of the apparatus. FIG. 6 shows a top down view of a large-scale additive manufacturing machine 800 according to an embodiment of the invention. There are two build units 802A and 802B mounted to a positioning system 801. There are z crossbeams 803A and 803B for moving the build units in the z direction. There are x crossbeams 804A and 804B for moving the build units in the x direction. The build units 802A and 802B are attached to the x crossbeams 804A and 804B by mechanisms 805A and 805B that move the units in the y direction. The object(s) being formed are not shown in this view. A build envelope (also not shown in this view) can be built using one or both of the build units, including by laser powder deposition. The build envelope could also be built by, e.g., welding. In general, any number of objects and build envelopes can be built simultaneously using the methods and systems of the present invention.
[0044]Referring now to FIG. 7, an additive manufacturing machine 900 generally defines a vertical or Z-direction and a horizontal plane defined perpendicular to the Z-direction (also as defined, e.g., by the X-direction and the Y-direction in FIG. 1). Build platform 902 extends within the horizontal plane to provide a surface for depositing layers of additive powder (not shown in FIG. 7), as described herein. In general, additive manufacturing machine 900 includes a build unit 904 that is generally used for depositing a layer of additive powder and fusing portions of the layer of additive powder to form a single layer of a component (not illustrated in FIG. 7). As described above, build unit 904 forms the component layer-by-layer by printing or fusing layers of additive powder as build unit 904 moves up along the vertical direction.
[0045]Build unit 904 generally includes a powder dispenser 906 for discharging a layer of additive powder and an energy source 908 for selectively directing energy toward the layer of additive powder to fuse portions of the layer of additive powder. For example, powder dispenser 906 may include a powder hopper 910, a system of gates (see, e.g., FIG. 4, 610A-C and FIG. 5, 702A-C), a recoater arm 912, and any other components which facilitate the deposition of smooth layers of additive powder on build platform 902 or a sub layer. In addition, “energy source” may be used to refer to any device or system of devices configured for directing an energy beam towards a layer of additive powder to fuse a portion of that layer of additive powder. For example, according to an exemplary embodiment, energy source may be an irradiation emission directing device and many include a scanner having a lens 914 for directing an energy beam.
[0046]As described above, build unit 904 is described as utilizing a direct metal laser sintering (DMLS) or direct metal laser melting (DMLM) process using an energy source to selectively sinter or melt portions of a layer of powder. However, it should be appreciated that according to alternative embodiments, additive manufacturing machine 900 and build unit 904 may be configured for using a “binder jetting” process of additive manufacturing. In this regard, binder jetting involves successively depositing layers of additive powder in a similar manner as described above. However, instead of using an energy source to generate an energy beam to selectively melt or fuse the additive powders, binder jetting involves selectively depositing a liquid binding agent onto each layer of powder. For example, the liquid binding agent may be a photo-curable polymer or another liquid bonding agent. Other suitable additive manufacturing methods and variants are intended to be within the scope of the present subject matter.
[0047]Notably, according aspects of the present subject matter, build unit 904 is supported by a gantry 916 that is positioned above build platform 902 and at least partially defines a build area 918. Notably, as used herein, “gantry”916 may be intended to refer to the horizontally extending support beams and not the vertical support legs (not shown) that support the gantry 916 over the build platform 902. Although a gantry 916 is used to describe the support for build unit 904 herein, it should be appreciated that any suitable vertical support means can be used according to alternative embodiments. For example, build unit 904 may be attached to a positioning system such as a delta robot, a cable robot, a robot arm, a belt drive, etc. In addition, although build platform 902 is illustrated herein as being stationary, it should be appreciated that build platform 902 may move according to alternative embodiments. In this regard, for example build platform 902 may be configured for translating along the X-Y-Z directions or may rotate about one of these axes.
[0048]According to the illustrated embodiment, gantry 916 defines a build area 918 having a maximum build width (e.g., measured along the X-direction), build depth (e.g., measured along the Y-direction), and build height (measured along the vertical direction or Z-direction). Gantry 916 is generally configured for movably supporting build unit 904 within build area 918, e.g., such that build unit 904 may be positioned at any location (e.g., along X-Y-Z axes) within build area 918. Moreover, according to exemplary embodiments, gantry 916 may further be configured for rotating build unit about the X, Y, and Z axes. Thus, build unit 904 may be positioned and oriented in any suitable manner within build area 918 to perform an additive manufacturing process.
[0049]Referring still to FIG. 7, a schematic view of a gas flow system 930 of additive manufacturing machine 900 is provided according to an exemplary embodiment of the present subject matter. As shown, additive manufacturing machine 900 includes a variety of subsystems that may require a flow of gas or other fluid to achieve some function within that subsystem. Thus, as used herein, “subsystem” may be used to refer to any of these distinct systems within additive manufacturing machine 900 that require a flow of gas for particular function. In addition, gas flow system 930 may be used generally to refer to a plurality of gas circulation loops associated with each of these subsystems, examples of which are described below.
[0050]For purpose of explaining aspects of the present subject matter, three particular subsystems will be described herein. However, it should be appreciated that these three subsystems are used only for exemplary purposes and are not intended to limit the scope of the present subject matter. Moreover, these subsystems are only illustrated in schematic form and described generally to explain the configuration and operation of gas flow loops according to the present subject matter. The present subject matter is not intended to be limited to the particular subsystems, gas loops, or specific configurations described.
[0051]Additive manufacturing machine 900 may include a condensate evacuation subsystem 940 that is generally configured for removing condensate, effluent, and other byproducts generated by the additive manufacturing process proximate the powder bed. For example, as described briefly above, when the additive powder is melted or sintered, a plume of gases, dust, particulates, or other byproducts may be generated. Notably, it is desirable to remove or evacuate these byproducts from the melting or sintering area for improved printing. As explained above, additive manufacturing machine 900 may thus include a gas flow system for urging a flow of gas above and parallel to the powder bed to remove such byproducts. According to the illustrated embodiment of FIG. 7, this gas flow system is condensate evacuation subsystem 940.
[0052]Condensate evacuation subsystem 940 includes a condensate loop 942 and a first gas circulation device 944 operably coupled to condensate loop 942 for circulating a first gas 946 through build area 918 proximate build platform 902 or sublayer of additive powder. In this regard, for example, condensate loop 942 is a substantially closed loop of conduit, pipe, or tubing through which first gas 946 may be circulated. Condensate loop 942 may define an open portion or evacuation region 948 proximate the powder bed within build area 918 for drawing in condensate and other byproducts.
[0053]More specifically, according to the illustrated embodiment, condensate loop 942 defines a discharge port 950 and a suction port 952 positioned on opposite sides of build unit 904 and evacuation region 948 along a horizontal direction. In this manner, as first gas circulation device 944 circulates first gas 946 through condensate loop 942, the flow of first gas 946 exits from discharge port 950 and travels proximate and substantially parallel to a surface of the powder bed to collect condensate, smoke, fumes, etc. The flow of first gas 946 is then drawn in through suction port 952 where it is recirculated through condensate loop 942. According to an exemplary embodiment, the flow of first gas 946 is substantially laminar, although first gas circulation device 944 can also create a turbulent flow if so desired.
[0054]Although discharge port 950 and suction port 952 are illustrated as being positioned on opposite sides of build unit 904 and evacuation region 948, it should be appreciated that other positions and orientations of condensate loop 942 may be used according to alternative embodiments. For example, according to another embodiment, discharge port 950 may be positioned above the work surface, e.g., proximate energy source 908. Discharge port 950 may urge a flow of first gas 946 down into evacuation region 948. In such an em