System and methods for realizing transverse anderson localization in energy relays using component engineered structures

公开(公告)号:
US20230417981A1
公开(公告)日:
2023-12-28
申请号:
US18/212933
申请日:
2023-06-22
授权日:
-
受理局:
美国
专利类型:
发明申请
简单法律状态:
审中
法律状态/事件:
实质审查
IPC分类号:
F21V8/00 | G02B27/09 | G02B30/00 | G02B30/33 | G02B6/02 | G02B6/04 | G02B27/10 | G02B6/293 | H04N13/388 | G02B6/08 | G02B27/01
战略新兴产业分类:
电子核心产业
国民经济行业分类号:
C4350 | C3874 | C4090 | C3879
当前申请(专利权)人:
LIGHT FIELD LAB, INC.
原始申请(专利权)人:
LIGHT FIELD LAB, INC.
当前申请(专利权)人地址:
San Jose, CA, US
工商统一社会信用代码:
-
工商登记状态:
-
工商注册地址:
-
工商成立日期:
2017-01-01
工商企业类型:
-
发明人:
KARAFIN, JONATHAN SEAN | BEVENSEE, BRENDAN ELWOOD
代理机构:
-
代理人:
-
摘要:
Disclosed are systems and methods for manufacturing energy relays for energy directing systems and Transverse Anderson Localization. Systems and methods include providing first and second component engineered structures with first and second sets of engineered properties and forming a medium using the first component engineered structure and the second component engineered structure. The forming step includes randomizing a first engineered property in a first orientation of the medium resulting in a first variability of that engineered property in that plane, and the values of the second engineered property allowing for a variation of the first engineered property in a second orientation of the medium, where the variation of the first engineered property in the second orientation is less than the variation of the first engineered property in the first orientation.
技术问题语段:
The patent text discusses the idea of a virtual world where people can interact and have experiences. This idea has been popularized in science fiction and has been the inspiration for innovation for many years. However, there is no actual implementation of this experience outside of literature and media. The technical problem is how to create a compelling implementation of this virtual world.
技术功效语段:
The patent describes a method for manufacturing energy relays with engineered structures that have improved performance. The method involves forming a medium using a first component engineered structure and a second component engineered structure, where the first and second structures have common engineered properties. The first and second structures have different refractive indices in different directions, which results in a variation of the refractive index in the same plane of the medium. The refractive index in the second plane is less than the refractive index in the first plane, resulting in a higher transport efficiency of energy waves in the longitudinal orientation of the assembly. The method can also involve forming the assembly into a layered, concentric, cylindrical configuration or a rolled, spiral configuration, and processing the assembly to create optical elements, gradient index lenses, diffractive optics, and other optical devices. The properties of the engineered structures combine to exhibit the properties of Transverse Anderson Localization.
权利要求:
1. A method comprising: (a) providing one or more of a first component engineered structure, the first component engineered structure having a first set of engineered properties; (b) providing one or more of a second component engineered structure, the second component engineered structure having a second set of engineered properties, wherein both the first component engineered structure and the second component engineered structure have at least two common engineered properties, denoted by a first engineered property and a second engineered property; and (c) forming a medium using the one or more of the first component engineered structure and the one or more of the second component engineered structure, wherein the forming step randomizes the first engineered property in a first plane of the medium resulting in a first variability of that engineered property in that plane, with the values of the second engineered property allowing for a variation of the first engineered property in a second plane of the medium, wherein the variation of the first engineered property in the second plane is less than the variation of the first engineered property in the first plane. 2. The method of claim 1, wherein the first engineered property that is common to both the first component engineered structure and the second component engineered structure is index of refraction, and the second engineered property that is common to both the first component engineered structure and the second component engineered structure is shape, and the forming step (c) randomizes the refractive index of the first component engineered structure and the refractive index of the second component engineered structure along a first plane of the medium resulting in a first variability in index of refraction, with the combined geometry of the shapes of the first component engineered structure and the second component engineered structure resulting in a variation in index of refraction in the second plane of the medium, where the variation of the index of refraction in the second plane is less than the variation of index of refraction in the first plane of the medium. 3. The method of claim 1, further comprising: (d) forming an assembly using the medium such that the first plane of the medium extends along the transverse orientation of the assembly and the second plane of the medium extends along the longitudinal orientation of the assembly, wherein energy waves propagating through the assembly have higher transport efficiency in the longitudinal orientation versus the transverse orientation and are spatially localization in the transverse orientation due to the first engineered property and the second engineered property. 4. The method of claim 3, wherein the forming steps (c) or (d) includes forming the assembly into a layered, concentric, cylindrical configuration or a rolled, spiral configuration or other assembly configurations required for optical prescriptions defining the formation of the assembly of the one or more first component engineered structure and the one or more second component engineered structure in predefined volumes along at least one of the transverse orientation and the longitudinal orientation thereby resulting in one or more gradients between the first order of refractive index and the second order of refractive index with respect to location throughout the medium. 5. The method of claim 3, wherein each of the forming steps (c) and (d) includes at least one of forming by intermixing, curing, bonding, UV exposure, fusing, machining, laser cutting, melting, polymerizing, etching, engraving, 3D printing, CNCing, lithographic processing, metallization, liquefying, deposition, ink-jet printing, laser forming, optical forming, perforating, layering, heating, cooling, ordering, disordering, polishing, obliterating, cutting, material removing, compressing, pressurizing, vacuuming, gravitational forces and other processing methods. 6. The method of claim 3, further comprising: (e) processing the assembly by forming, molding or machining to create at least one of complex or formed shapes, curved or slanted surfaces, optical elements, gradient index lenses, diffractive optics, optical relay, optical taper and other geometric configurations or optical devices. 7. The method of claim 2, wherein the properties of the engineered structures of steps (a) and (b) and the formed medium of step (c) cumulatively combine to exhibit the properties of Transverse Anderson Localization. 8. The method of claim 1, wherein the forming step (c) includes forming with at least one of: (i) an additive process of the first component engineered structure to the second component engineered structure; (ii) a subtractive process of the first component engineered structure to produce voids or an inverse structure to form with the second component engineered structure; (iii) an additive process of the second component engineered structure to the first component engineered structure; or (iv) a subtractive process of the second component engineered structure to produce voids or an inverse structure to form with the first component engineered structure. 9. The method of claim 1, wherein each of the providing steps (a) and (b) includes the one or more of the first component engineered structure and the one or more of the second component engineered structure being in at least one of liquid, gas or solid form. 10. The method of claim 2, wherein each of the providing steps (a) and (b) includes the one or more of the first component engineered structure and the one or more of the second component engineered structure being of at least one of polymeric material, and wherein each of the first refractive index and the second refractive index being greater than 1. 11. The method of claim 1, wherein each of the providing steps (a) and (b) includes the one or more of the first component engineered structure and the one or more of the second component engineered structure, having one or more of first component engineered structure dimensions differing in a first and second plane, and one or more of second component engineered structure dimensions differing in a first and second plane, wherein one or more of the structure dimensions of the second plane are different than the first plane, and the structure dimension of the first plane are less than four times the wavelength of visible light. 12. A method comprising: (a) providing one or more of a first component engineered structure, the first component engineered structure having a first refractive index n0, engineered property p0, and first absorptive optical quality b0; (b) providing one or more N component engineered structure, each Ni structure with refractive index ni, engineered property pi, and absorptive optical quality bi, wherein N is 1 or greater; (c) forming a medium using the one or more of the first component engineered structure, and the one or more of the Ni structure, the forming step randomizes the first refractive index n0 and the refractive index ni along a first plane of the medium resulting in a first refractive index variability, with engineered properties p0 and pi inducing a second refractive index variability along a second plane of the medium, wherein the second plane is different from the first plane, and wherein the second refractive index variability is lower than the first refractive index variability due to the combined geometry between the first engineered property p0 and the engineered property pi; and (d) forming an assembly using the medium such that the first plane of the medium is the transverse orientation of the assembly and the second plane of the medium is the longitudinal orientation of the assembly, wherein energy waves propagating from an entrance to an exit of the assembly have higher transport efficiency in the longitudinal orientation versus the transverse orientation and are spatially localization in the transverse orientation due to the engineered properties and the resultant refractive index variability, and wherein the absorptive optical quality of the medium facilitates the reduction of unwanted diffusion or scatter of energy waves through the assembly. 13. The method of claim 12, wherein each of the providing steps (a) and (b) includes the one or more of the first component engineered structure and the one or more of the i structure being an additive process including at least one of bonding agent, oil, epoxy, and other optical grade, adhesive materials or immersion fluids. 14. The method of claim 12, wherein the forming step (c) includes forming the medium into a non-solid form, and wherein the forming step (d) includes forming the assembly into a loose, coherent waveguide system having a flexible housing for receiving the non-solid form medium. 15. The method of claim 12, wherein the forming step (c) includes forming the medium into a liquid form, and wherein the forming step (d) includes forming the assembly by directly depositing or applying liquid form medium. 16. The method of claim 12, wherein the forming steps (c) and (d) include combining two or more loose or fused mediums in varied orientations for forming at least one of multiple entries or multiple exits of the assembly. 17. The method of claim 12, wherein the forming step (d) includes forming the assembly into a system to transmit and receive the energy waves. 18. The method of claim 17, wherein the system is capable of both transmitting and receiving localized energy simultaneously through the same medium. 19. A method comprising: (a) providing one or more component engineered structure, each one or more structure having material engineered properties, wherein at least one structure is processed into a transient bi-axial state or exhibits non-standard temporary ordering of chemical chains; (b) forming a medium by at least one of an additive, subtractive or isolated process, the additive process includes adding at least one transient structure to one or more additional structure, the subtractive process includes producing voids or an inverse structure from at least one transient structure to form with the one or more additional structure, the isolated process includes engineering at least one transient structure in the absence or removal of additional structure; and (c) forming an assembly with the medium such that at least one transient material modifies the transient ordering of chemical chains inducing an increase of material property variation along a first plane of an assembly relative to a decrease of material property variation along a second plane of an assembly. 20. The method of claim 19, further comprising: (d) the formed assembly of step (c) resulting in structures within the compound formed medium of step (b) exhibiting at least one of different dimensions, particle size or volume individually and cumulatively as provided for in step (a) and engineered as a compound sub-structure for further assembly; (e) providing at least one or more of the compound sub-structure from step (c) and the compound formed medium from step (b), collectively called sub-structure, the one or more sub-structure having one or more refractive index variation for a first and second plane and one or more sub-structure engineered property; (f) providing one or more N structure, each Ni structure having a refractive index ni, and an engineered property pi, wherein i is 1 or greater; (g) forming a medium using the one or more sub-structure and the one or more Ni structure, the forming step randomizes the ni refractive index along the one or more sub-structure's first plane resulting in a first compound medium refractive index variability, with engineered properties inducing a second compound medium refractive index variability along the one or more sub-structure's second plane, wherein the one or more sub-structure's second plane is different from the one or more sub-structure's first plane, and wherein the second compound medium refractive index variability is lower than the first compound medium refractive index variability due to the one or more sub-structure engineered property and the Ni engineered property; and (h) forming a compound assembly using the compound medium such that the one or more sub-structure's first plane is the transverse orientation of the compound assembly and the one or more sub-structure's second plane is the longitudinal orientation of the compound assembly, wherein energy waves propagating to or from an entrance to an exit of the compound assembly have higher transport efficiency in the longitudinal orientation versus the transverse orientation and are spatially localized in the transverse orientation due to the compound engineered properties and the resultant compound refractive index variability. 21.-39. (canceled)
技术领域:
[0001]This disclosure generally relates to energy relays, and more specifically, to systems of transverse Anderson localization energy relays and methods of manufacturing thereof.
背景技术:
[0002]The dream of an interactive virtual world within a “holodeck” chamber as popularized by Gene Roddenberry's Star Trek and originally envisioned by author Alexander Moszkowski in the early 1900s has been the inspiration for science fiction and technological innovation for nearly a century. However, no compelling implementation of this experience exists outside of literature, media, and the collective imagination of children and adults alike.
发明内容:
[0003]Disclosed are system and method of manufacturing transverse Anderson localization energy relays with engineered structures. [0004]One method of forming a transverse Anderson localization energy relays with engineered structures includes: (a) providing one or more of a first component engineered structure, the first component engineered structure having a first set of engineered properties, and (b) providing one or more of a second component engineered structure, the second component engineered structure having a second set of engineered properties, where both the first component engineered structure and the second component engineered structure have at least two common engineered properties, denoted by a first engineered property and a second engineered property. [0005]Next step in the method includes (c) forming a medium using the one or more of the first component engineered structure and the one or more of the second component engineered structure, the forming step randomizes the first engineered property in a first plane of the medium resulting in a first variability of that engineered property in that plane, with the values of the second engineered property allowing for a variation of the first engineered property in a second plane of the medium, where the variation of the first engineered property in the second plane is less than the variation of the first engineered property in the first plane. [0006]In one embodiment, the first engineered property that is common to both the first component engineered structure and the second component engineered structure is index of refraction, and the second engineered property that is common to both the first component engineered structure and the second component engineered structure is shape, and the forming step (c) randomizes the refractive index of the first component engineered structure and the refractive index of the second component engineered structure along a first plane of the medium resulting in a first variability in index of refraction, with the combined geometry of the shapes of the first component engineered structure and the second component engineered structure resulting in a variation in index of refraction in the second plane of the medium, where the variation of the index of refraction in the second plane is less than the variation of index of refraction in the first plane of the medium. [0007]In one embodiment, the method further includes (d) forming an assembly using the medium such that the first plane of the medium extends along the transverse orientation of the assembly and the second plane of the medium extends along the longitudinal orientation of the assembly, where energy waves propagating through the assembly have higher transport efficiency in the longitudinal orientation versus the transverse orientation and are spatially localized in the transverse orientation due to the first engineered property and the second engineered property. [0008]In some embodiments, the forming steps (c) or (d) includes forming the assembly into a layered, concentric, cylindrical configuration or a rolled, spiral configuration or other assembly configurations required for optical prescriptions defining the formation of the assembly of the one or more first component engineered structure and the one or more second component engineered structure in predefined volumes along at least one of the transverse orientation and the longitudinal orientation thereby resulting in one or more gradients between the first order of refractive index and the second order of refractive index with respect to location throughout the medium. [0009]In other embodiments, each of the forming steps (c) and (d) includes at least one of forming by intermixing, curing, bonding, UV exposure, fusing, machining, laser cutting, melting, polymerizing, etching, engraving, 3D printing, CNCing, lithographic processing, metallization, liquefying, deposition, ink-jet printing, laser forming, optical forming, perforating, layering, heating, cooling, ordering, disordering, polishing, obliterating, cutting, material removing, compressing, pressurizing, vacuuming, gravitational forces and other processing methods. [0010]In yet another embodiment, the method further includes (e) processing the assembly by forming, molding or machining to create at least one of complex or formed shapes, curved or slanted surfaces, optical elements, gradient index lenses, diffractive optics, optical relay, optical taper and other geometric configurations or optical devices. [0011]In an embodiment, the properties of the engineered structures of steps (a) and (b) and the formed medium of step (c) cumulatively combine to exhibit the properties of Transverse Anderson Localization. [0012]In some embodiments, the forming step (c) includes forming with at least one of: (i) an additive process of the first component engineered structure to the second component engineered structure; (ii) a subtractive process of the first component engineered structure to produce voids or an inverse structure to form with the second component engineered structure; (iii) an additive process of the second component engineered structure to the first component engineered structure; or (iv) a subtractive process of the second component engineered structure to produce voids or an inverse structure to form with the first component engineered structure. [0013]In one embodiment, each of the providing steps (a) and (b) includes the one or more of the first component engineered structure and the one or more of the second component engineered structure being in at least one of liquid, gas or solid form. In another embodiment, each of the providing steps (a) and (b) includes the one or more of the first component engineered structure and the one or more of the second component engineered structure being of at least one of polymeric material, and where each of the first refractive index and the second refractive index being greater than 1. In one embodiment, each of the providing steps (a) and (b) includes the one or more of the first component engineered structure and the one or more of the second component engineered structure, having one or more of first component engineered structure dimensions differing in a first and second plane, and one or more of second component engineered structure dimensions differing in a first and second plane, where one or more of the structure dimensions of the second plane are different than the first plane, and the structure dimension of the first plane are less than four times the wavelength of visible light. [0014]Another method of forming a transverse Anderson localization energy relays with engineered structures includes: (a) providing one or more of a first component engineered structure, the first component engineered structure having a first refractive index n0, engineered property p0, and first absorptive optical quality b0, and (b) providing one or more N component engineered structure, each Ni structure with refractive index ni, engineered property pi, and absorptive optical quality bi, where N is 1 or greater. [0015]In another embodiment, the method includes: (c) forming a medium using the one or more of the first component engineered structure, and the one or more of the Ni structure, the forming step randomizes the first refractive index n0 and the refractive index ni along a first plane of the medium resulting in a first refractive index variability, with engineered properties p0 and pi inducing a second refractive index variability along a second plane of the medium, where the second plane is different from the first plane, and where the second refractive index variability is lower than the first refractive index variability due to the combined geometry between the first engineered property p0 and the engineered property pi. [0016]In yet another embodiment, the method includes: (d) forming an assembly using the medium such that the first plane of the medium is the transverse orientation of the assembly and the second plane of the medium is the longitudinal orientation of the assembly, where energy waves propagating from an entrance to an exit of the assembly have higher transport efficiency in the longitudinal orientation versus the transverse orientation and are spatially localized in the transverse orientation due to the engineered properties and the resultant refractive index variability, and where the absorptive optical quality of the medium facilitates the reduction of unwanted diffusion or scatter of energy waves through the assembly. [0017]In some embodiments, where each of the providing steps (a) and (b) includes the one or more of the first component engineered structure and the one or more of the i structure being an additive process including at least one of bonding agent, oil, epoxy, and other optical grade, adhesive materials or immersion fluids. [0018]In some embodiments, the forming step (c) includes forming the medium into a non-solid form, and where the forming step (d) includes forming the assembly into a loose, coherent waveguide system having a flexible housing for receiving the non-solid form medium. [0019]In other embodiments, the forming step (c) includes forming the medium into a liquid form, and where the forming step (d) includes forming the assembly by directly depositing or applying liquid form medium. [0020]In some embodiments, the forming steps (c) and (d) include combining two or more loose or fused mediums in varied orientations for forming at least one of multiple entries or multiple exits of the assembly. [0021]In other embodiments, the forming step (d) includes forming the assembly into a system to transmit and receive the energy waves. In one embodiment, the system is capable of both transmitting and receiving localized energy simultaneously through the same medium. [0022]Another method of forming a transverse Anderson localization energy relays with engineered structures includes: (a) providing one or more component engineered structure, each one or more structure having material engineered properties, where at least one structure is processed into a transient bi-axial state or exhibits non-standard temporary ordering of chemical chains; (b) forming a medium by at least one of an additive, subtractive or isolated process, the additive process includes adding at least one transient structure to one or more additional structure, the subtractive process includes producing voids or an inverse structure from at least one transient structure to form with the one or more additional structure, the isolated process includes engineering at least one transient structure in the absence or removal of additional structure; and (c) forming an assembly with the medium such that at least one transient material modifies the transient ordering of chemical chains inducing an increase of material property variation along a first plane of an assembly relative to a decrease of material property variation along a second plane of an assembly. [0023]In one embodiment, the method further includes: (d) the formed assembly of step (c) resulting in structures within the compound formed medium of step (b) exhibiting at least one of different dimensions, particle size or volume individually and cumulatively as provided for in step (a) and engineered as a compound sub-structure for further assembly; (e) providing at least one or more of the compound sub-structure from step (c) and the compound formed medium from step (b), collectively called sub-structure, the one or more sub-structure having one or more refractive index variation for a first and second plane and one or more sub-structure engineered property; (f) providing one or more N structure, each Ni structure having a refractive index ni, and an engineered property pi, where i is 1 or greater; (g) forming a medium using the one or more sub-structure and the one or more Ni structure, the forming step randomizes the ni refractive index along the one or more sub-structure's first plane resulting in a first compound medium refractive index variability, with engineered properties inducing a second compound medium refractive index variability along the one or more sub-structure's second plane, where the one or more sub-structure's second plane is different from the one or more sub-structure's first plane, and where the second compound medium refractive index variability is lower than the first compound medium refractive index variability due to the one or more sub-structure engineered property and the Ni engineered property; and (h) forming a compound assembly using the compound medium such that the one or more sub-structure's first plane is the transverse orientation of the compound assembly and the one or more sub-structure's second plane is the longitudinal orientation of the compound assembly, where energy waves propagating to or from an entrance to an exit of the compound assembly have higher transport efficiency in the longitudinal orientation versus the transverse orientation and are spatially localized in the transverse orientation due to the compound engineered properties and the resultant compound refractive index variability. [0024]In some embodiments, the assembly of step (c) or step (h) includes heating or other form of processing to modify the transient ordering of chemical chains of the materials within the assembly, where the arrangement, density, and engineered property of the transient materials are varied in at least one of the transverse orientation or the longitudinal orientation, thereby causing the assembly during heat treatment or other processing to naturally taper or cause dimensional variations along at least one of the transverse orientation or the longitudinal orientation of the assembly to produce various optical geometries that would have otherwise required complex manufacturing that maintain the appropriate ordering for energy transport efficiency. [0025]In one embodiment, a device having Transverse Anderson Localization property includes a relay element formed of one or more of a first structure and one or more of a second structure, the first structure having a first wave propagation property and the second structure having a second wave propagation property, the relay element configured to relay energy therethrough, where, along a transverse orientation the first structure and the second structure are arranged in an interleaving configuration with spatial variability, where, along a longitudinal orientation the first structure and the second structure have substantially similar configuration, and where energy is spatially localized in the transverse orientation and greater than about 50% of the energy propagates along the longitudinal orientation versus the transverse orientation through the relay element. [0026]In another embodiment, the relay element includes a first surface and a second surface, and wherein the energy propagating between the first surface and the second surface travel along a path that is substantially parallel to the longitudinal orientation, in some embodiments, the first wave propagation property is a first index of refraction and the second wave propagation property is a second index of refraction, where a variability between the first index of refraction and the second index of refraction results in the energy being spatially localized in the transverse orientation and greater than about 50% of the energy propagating from the first surface to the second surface. [0027]In one embodiment, the energy passing through the first surface has a first resolution, where the energy passing through the second surface has a second resolution, and where the second resolution is no less than about 50% of the first resolution. In another embodiment, the energy with a uniform profile presented to the first surface passes through the second surface to substantially fill a cone with an opening angle of +/−10 degrees relative to the normal to the second surface, irrespective of location of the energy on the second surface. [0028]In one embodiment, the first surface has a different surface area than the second surface, where the relay element further comprises a sloped profile portion between the first surface and the second surface, and where the energy passing through the relay element results in spatial magnification or spatial de-magnification. In another embodiment, each of the first structure and the second structure includes glass, carbon, optical fiber, optical film, polymer or mixtures thereof. [0029]In some embodiments, both the first surface and the second surface are planar, or both the first surface and the second surface are non-planar, or the first surface is planar and the second surface is non-planar, or the first surface is non-planar and the second surface is planar, or both the first surface and the second surface are concave, or both the first surface and the second surface are convex, or the first surface is concave and the second surface is convex, or the first surface is convex and the second surface is concave. [0030]In one embodiment, the device includes the first structure having an average first dimension along the transverse orientation that is less than four times the wavelength of the energy relayed therethrough, average second and third dimensions substantially larger than the average first dimension along second and third orientations, respectively, the second and third orientations substantially orthogonal to the transverse orientation, where the second wave propagation property has the same property as the first wave propagation property but with a different value, where the first structure and the second structure are arranged with maximum spatial variability in the transverse dimension such that the first wave propagation property and the second wave propagation property have maximum variation, where the first structure and the second structure are spatially arranged such that the first wave propagation property and the second wave propagation property are invariant along the longitudinal orientation, and where along the transverse orientation throughout the relay element, the center-to-center spacing between channels of the first structure varies randomly, with an average spacing between one and four times an average dimension of the first structure, and where two adjacent longitudinal channels of the first structure are separated by the second structure at substantially every location by a distance of at least one half the average dimension of the first structure. [0031]In one embodiment, the relay element includes a first surface and a second surface, and where the energy propagating between the first surface and the second surface travel along a path that is substantially parallel to the longitudinal orientation. In another embodiment, the first wave propagation property is a first index of refraction and the second wave propagation property is a second index of refraction, where a variability between the first index of refraction and the second index of refraction results in the energy being spatially localized in the transverse orientation and greater than about 50% of the energy propagating from the first surface to the second surface. [0032]In one embodiment, a system may include Transverse Anderson Localization energy relays with engineered structures incorporating the devices and relay elements described herein. [0033]These and other advantages of the present disclosure will become apparent to those skilled in the art from the following detailed description and the appended claims.
具体实施方式:
[0051]An embodiment of a Holodeck (collectively called “Holodeck Design Parameters”) provide sufficient energy stimulus to fool the human sensory receptors into believing that received energy impulses within a virtual, social and interactive environment are real, providing: 1) binocular disparity without external accessories, head-mounted eyewear, or other peripherals; 2) accurate motion parallax, occlusion and opacity throughout a viewing volume simultaneously for any number of viewers; 3) visual focus through synchronous convergence, accommodation and miosis of the eye for all perceived rays of light; and 4) converging energy wave propagation of sufficient density and resolution to exceed the human sensory “resolution” for vision, hearing, touch, taste, smell, and/or balance. [0052]Based upon conventional technology to date, we are decades, if not centuries away from a technology capable of providing for all receptive fields in a compelling way as suggested by the Holodeck Design Parameters including the visual, auditory, somatosensory, gustatory, olfactory, and vestibular systems. [0053]In this disclosure, the terms light field and holographic may be used interchangeably to define the energy propagation for stimulation of any sensory receptor response. While initial disclosures may refer to examples of electromagnetic and mechanical energy propagation through energy surfaces for holographic imagery and volumetric haptics, all forms of sensory receptors are envisioned in this disclosure. Furthermore, the principles disclosed herein for energy propagation along propagation paths may be applicable to both energy emission and energy capture. [0054]Many technologies exist today that are often unfortunately confused with holograms including lenticular printing, Pepper's Ghost, glasses-free stereoscopic displays, horizontal parallax displays, head-mounted VR and AR displays (HMD), and other such illusions generalized as “fauxlography.” These technologies may exhibit some of the desired properties of a true holographic display, however, lack the ability to stimulate the human visual sensory response in any way sufficient to address at least two of the four identified Holodeck Design Parameters. [0055]These challenges have not been successfully implemented by conventional technology to produce a seamless energy surface sufficient for holographic energy propagation. There are various approaches to implementing volumetric and direction multiplexed light field displays including parallax barriers, hogels, voxels, diffractive optics, multi-view projection, holographic diffusers, rotational mirrors, multilayered displays, time sequential displays, head mounted display, etc., however, conventional approaches may involve a compromise on image quality, resolution, angular sampling density, size, cost, safety, frame rate, etc., ultimately resulting in an unviable technology. [0056]To achieve the Holodeck Design Parameters for the visual, auditory, somatosensory systems, the human acuity of each of the respective systems is studied and understood to propagate energy waves to sufficiently fool the human sensory receptors. The visual system is capable of resolving to approximately 1 arc min, the auditory system may distinguish the difference in placement as little as three degrees, and the somatosensory system at the hands are capable of discerning points separated by 2-12 mm. While there are various and conflicting ways to measure these acuities, these values are sufficient to understand the systems and methods to stimulate perception of energy propagation. [0057]Of the noted sensory receptors, the human visual system is by far the most sensitive given that even a single photon can induce sensation. For this reason, much of this introduction will focus on visual energy wave propagation, and vastly lower resolution energy systems coupled within a disclosed energy waveguide surface may converge appropriate signals to induce holographic sensory perception. Unless otherwise noted, all disclosures apply to all energy and sensory domains. [0058]When calculating for effective design parameters of the energy propagation for the visual system given a viewing volume and viewing distance, a desired energy surface may be designed to include many gigapixels of effective energy location density. For wide viewing volumes, or near field viewing, the design parameters of a desired energy surface may include hundreds of gigapixels or more of effective energy location density. By comparison, a desired energy source may be designed to have 1 to 250 effective megapixels of energy location density for ultrasonic propagation of volumetric haptics or an array of 36 to 3,600 effective energy locations for acoustic propagation of holographic sound depending on input environmental variables. What is important to note is that with a disclosed bi-directional energy surface architecture, all components may be configured to form the appropriate structures for any energy domain to enable holographic propagation. [0059]However, the main challenge to enable the Holodeck today involves available visual technologies and electromagnetic device limitations. Acoustic and ultrasonic devices are less challenging given the orders of magnitude difference in desired density based upon sensory acuity in the respective receptive field, although the complexity should not be underestimated. While holographic emulsion exists with resolutions exceeding the desired density to encode interference patterns in static imagery, state-of-the-art display devices are limited by resolution, data throughput and manufacturing feasibility. To date, no singular display device has been able to meaningfully produce a light field having near holographic resolution for visual acuity. [0060]Production of a single silicon-based device capable of meeting the desired resolution for a compelling light field display may not practical and may involve extremely complex fabrication processes beyond the current manufacturing capabilities. The limitation to tiling multiple existing display devices together involves the seams and gap formed by the physical size of packaging, electronics, enclosure, optics and a number of other challenges that inevitably result in an unviable technology from an imaging, cost and/or a size standpoint. [0061]The embodiments disclosed herein may provide a real-world path to building the Holodeck. [0062]Example embodiments will now be described hereinafter with reference to the accompanying drawings, which form a part hereof, and which illustrate example embodiments which may be practiced. As used in the disclosures and the appended claims, the terms “embodiment”, “example embodiment”, and “exemplary embodiment” do not necessarily refer to a single embodiment, although they may, and various example embodiments may be readily combined and interchanged, without departing from the scope or spirit of example embodiments. Furthermore, the terminology as used herein is for the purpose of describing example embodiments only and is not intended to be limitations. In this respect, as used herein, the term “in” may include “in” and “on”, and the terms “a,”“an” and “the” may include singular and plural references. Furthermore, as used herein, the term “by” may also mean “from”, depending on the context. Furthermore, as used herein, the term “if” may also mean “when” or “upon,” depending on the context. Furthermore, as used herein, the words “and/or” may refer to and encompass any and all possible combinations of one or more of the associated listed items. Holographic System Considerations Overview of Light Field Energy Propagation Resolution [0063]Light field and holographic display is the result of a plurality of projections where energy surface locations provide angular, color and intensity information propagated within a viewing volume. The disclosed energy surface provides opportunities for additional information to coexist and propagate through the same surface to induce other sensory system responses. Unlike a stereoscopic display, the viewed position of the converged energy propagation paths in space do not vary as the viewer moves around the viewing volume and any number of viewers may simultaneously see propagated objects in real-world space as if it was truly there. In some embodiments, the propagation of energy may be located in the same energy propagation path but in opposite directions. For example, energy emission and energy capture along an energy propagation path are both possible in some embodiments of the present disclosed. [0064]FIG. 1 is a schematic diagram illustrating variables relevant for stimulation of sensory receptor response. These variables may include surface diagonal 101, surface width 102, surface height 103, a determined target seating distance 118, the target seating field of view field of view from the center of the display 104, the number of intermediate samples demonstrated here as samples between the eyes 105, the average adult inter-ocular separation 106, the average resolution of the human eye in arcmin 107, the horizontal field of view formed between the target viewer location and the surface width 108, the vertical field of view formed between the target viewer location and the surface height 109, the resultant horizontal waveguide element resolution, or total number of elements, across the surface 110, the resultant vertical waveguide element resolution, or total number of elements, across the surface 111, the sample distance based upon the inter-ocular spacing between the eyes and the number of intermediate samples for angular projection between the eyes 112, the angular sampling may be based upon the sample distance and the target seating distance 113, the total resolution Horizontal per waveguide element derived from the angular sampling desired 114, the total resolution Vertical per waveguide element derived from the angular sampling desired 115, device Horizontal is the count of the determined number of discreet energy sources desired 116, and device Vertical is the count of the determined number of discreet energy sources desired 117. [0065]A method to understand the desired minimum resolution may be based upon the following criteria to ensure sufficient stimulation of visual (or other) sensory receptor response: surface size (e.g., 84″ diagonal), surface aspect ratio (e.g., 16:9), seating distance (e.g., 128″ from the display), seating field of view (e.g., 120 degrees or +/−60 degrees about the center of the display), desired intermediate samples at a distance (e.g., one additional propagation path between the eyes), the average inter-ocular separation of an adult (approximately 65 mm), and the average resolution of the human eye (approximately 1 arcmin). These example values should be considered placeholders depending on the specific application design parameters. [0066]Further, each of the values attributed to the visual sensory receptors may be replaced with other systems to determine desired propagation path parameters. For other energy propagation embodiments, one may consider the auditory system's angular sensitivity as low as three degrees, and the somatosensory system's spatial resolution of the hands as small as 2-12 mm. [0067]While there are various and conflicting ways to measure these sensory acuities, these values are sufficient to understand the systems and methods to stimulate perception of virtual energy propagation. There are many ways to consider the design resolution, and the below proposed methodology combines pragmatic product considerations with the biological resolving limits of the sensory systems. As will be appreciated by one of ordinary skill in the art, the following overview is a simplification of any such system design, and should be considered for exemplary purposes only. [0068]With the resolution limit of the sensory system understood, the total energy waveguide element density may be calculated such that the receiving sensory system cannot discern a single energy waveguide element from an adjacent element, given: •⁢ Surface⁢ Aspect⁢ Ratio=Width⁢ (W)Height⁢ (H)•⁢ Surface⁢ Horizontal⁢ Size=Surface⁢ Diagonal*(1(1+(HW)2)•⁢ Surface⁢ Vertical⁢ Size=Surface⁢ Diagonal*(1(1+(WH)2)•⁢ Horizontal⁢ Field⁢ of⁢ View=2*atan⁢ (Surface⁢ Horizontal⁢ Size2*Seating⁢ Distance)•⁢ Vertical⁢ Field⁢ of⁢ View=2*atan⁢ (Surface⁢ Verticle⁢ Size2*Seating⁢ Distance)•⁢ Horizontal⁢ Element⁢ Resolution=Horizontal⁢ FoV*6⁢0Eye⁢ Resolution•⁢ Vertical⁢ Element⁢ Resolution=Vertical⁢ FoV*6⁢0Eye⁢ Resolution [0069]The above calculations result in approximately a 32×18° field of view resulting in approximately 1920×1080 (rounded to nearest format) energy waveguide elements being desired. One may also constrain the variables such that the field of view is consistent for both (u, v) to provide a more regular spatial sampling of energy locations (e.g. pixel aspect ratio). The angular sampling of the system assumes a defined target viewing volume location and additional propagated energy paths between two points at the optimized distance, given: •⁢ Sample⁢ Distance=Inter-Ocular⁢ Distance(N⁢umber⁢ of⁢ Desired⁢ Intermediate⁢ Samples+1)•⁢ Angular⁢ Sampling=atan⁢ (S⁢ample⁢ DistanceS⁢e⁢ating⁢ Distance) [0070]In this case, the inter-ocular distance is leveraged to calculate the sample distance although any metric may be leveraged to account for appropriate number of samples as a given distance. With the above variables considered, approximately one ray per 0.57° may be desired and the total system resolution per independent sensory system may be determined, given: •⁢ Locations⁢ Per⁢ Element⁢ (N)=Seating⁢ FoVAngular⁢ Sampling•⁢ Total⁢ Resolution⁢ H=N*Horizontal⁢ Element⁢ Resolution•⁢ Total⁢ Resolution⁢ V=N*Vertical⁢ Element⁢ Resolution [0071]With the above scenario given the size of energy surface and the angular resolution addressed for the visual acuity system, the resultant energy surface may desirably include approximately 400 k×225 k pixels of energy resolution locations, or 90 gigapixels holographic propagation density. These variables provided are for exemplary purposes only and many other sensory and energy metrology considerations should be considered for the optimization of holographic propagation of energy. In an additional embodiment, 1 gigapixel of energy resolution locations may be desired based upon the input variables. In an additional embodiment, 1,000 gigapixels of energy resolution locations may be desired based upon the input variables. Current Technology Limitations Active Area, Device Electronics, Packaging, and the Mechanical Envelope [0072]FIG. 2 illustrates a device 200 having an active area 220 with a certain mechanical form factor. The device 200 may include drivers 230 and electronics 240 for powering and interface to the active area 220, the active area having a dimension as shown by the x and y arrows. This device 200 does not take into account the cabling and mechanical structures to drive, power and cool components, and the mechanical footprint may be further minimized by introducing a flex cable into the device 200. The minimum footprint for such a device 200 may also be referred to as a mechanical envelope 210 having a dimension as shown by the M:x and M:y arrows. This device 200 is for illustration purposes only and custom electronics designs may further decrease the mechanical envelope overhead, but in almost all cases may not be the exact size of the active area of the device. In an embodiment, this device 200 illustrates the dependency of electronics as it relates to active image area 220 for a micro OLED, DLP chip or LCD panel, or any other technology with the purpose of image illumination. [0073]In some embodiments, it may also be possible to consider other projection technologies to aggregate multiple images onto a larger overall display. However, this may come at the cost of greater complexity for throw distance, minimum focus, optical quality, uniform field resolution, chromatic aberration, thermal properties, calibration, alignment, additional size or form factor. For most practical applications, hosting tens or hundreds of these projection sources 200 may result in a design that is much larger with less reliability. [0074]For exemplary purposes only, assuming energy devices with an energy location density of 3840×2160 sites, one may determine the number of individual energy devices (e.g., device 100) desired for an energy surface, given: •⁢ Devices⁢ H=Total⁢ Resolution⁢ HDevice⁢ Resolution⁢ H•⁢ Devices⁢ V=Total⁢ Resolution⁢ VDevice⁢ Resolution⁢ V [0075]Given the above resolution considerations, approximately 105×105 devices similar to those shown in FIG. 2 may be desired. It should be noted that many devices consist of various pixel structures that may or may not map to a regular grid. In the event that there are additional sub-pixels or locations within each full pixel, these may be exploited to generate additional resolution or angular density. Additional signal processing may be used to determine how to convert the light field into the correct (u,v) coordinates depending on the specified location of the pixel structure(s) and can be an explicit characteristic of each device that is known and calibrated. Further, other energy domains may involve a different handling of these ratios and device structures, and those skilled in the art will understand the direct intrinsic relationship between each of the desired frequency domains. This will be shown and discussed in more detail in subsequent disclosure. [0076]The resulting calculation may be used to understand how many of these individual devices may be desired to produce a full resolution energy surface. In this case, approximately 105×105 or approximately 11,080 devices may be desired to achieve the visual acuity threshold. The challenge and novelty exists within the fabrication of a seamless energy surface from these available energy locations for sufficient sensory holographic propagation. Summary of Seamless Energy Surfaces Configurations and Designs for Arrays of Energy Relays [0077]In some embodiments, approaches are disclosed to address the challenge of generating high energy location density from an array of individual devices without seams due to the limitation of mechanical structure for the devices. In an embodiment, an energy propagating relay system may allow for an increase the effective size of the active device area to meet or exceed the mechanical dimensions to configure an array of relays and form a singular seamless energy surface. [0078]FIG. 3 illustrates an embodiment of such an energy relay system 300. As shown, the relay system 300 may include a device 310 mounted to a mechanical envelope 320, with an energy relay element 330 propagating energy from the device 310. The relay element 330 may be configured to provide the ability to mitigate any gaps 340 that may be produced when multiple mechanical envelopes 320 of the device are placed into an array of multiple devices 310. [0079]For example, if a device's active area 310 is 20 mm×10 mm and the mechanical envelope 320 is 40 mm×20 mm, an energy relay element 330 may be designed with a magnification of 2:1 to produce a tapered form that is approximately 20 mm×10 mm on a minified end (arrow A) and 40 mm×20 mm on a magnified end (arrow B), providing the ability to align an array of these elements 330 together seamlessly without altering or colliding with the mechanical envelope 320 of each device 310. Mechanically, the relay elements 330 may be bonded or fused together to align and polish ensuring minimal seam gap 340 between devices 310. In one such embodiment, it is possible to achieve a seam gap 340 smaller than the visual acuity limit of the eye. [0080]FIG. 4 illustrates an example of a base structure 400 having energy relay elements 410 formed together and securely fastened to an additional mechanical structure 430. The mechanical structure of the seamless energy surface 420 provides the ability to couple multiple energy relay elements 410, 450 in series to the same base structure through bonding or other mechanical processes to mount relay elements 410, 450. In some embodiments, each relay element 410 may be fused, bonded, adhered, pressure fit, aligned or otherwise attached together to form the resultant seamless energy surface 420. In some embodiments, a device 480 may be mounted to the rear of the relay element 410 and aligned passively or actively to ensure appropriate energy location alignment within the determined tolerance is maintained. [0081]In an embodiment, the seamless energy surface comprises one or more energy locations and one or more energy relay element stacks comprise a first and second side and each energy relay element stack is arranged to form a singular seamless display surface directing energy along propagation paths extending between one or more energy locations and the seamless display surface, and where the separation between the edges of any two adjacent second sides of the terminal energy relay elements is less than the minimum perceptible contour as defined by the visual acuity of a human eye having better than 20/40 vision at a distance greater than the width of the singular seamless display surface. [0082]In an embodiment, each of the seamless energy surfaces comprise one or more energy relay elements each with one or more structures forming a first and second surface with a transverse and longitudinal orientation. The first relay surface has an area different than the second resulting in positive or negative magnification and configured with explicit surface contours for both the first and second surfaces passing energy through the second relay surface to substantially fill a +/−10-degree angle with respect to the normal of the surface contour across the entire second relay surface. [0083]In an embodiment, multiple energy domains may be configured within a single, or between multiple energy relays to direct one or more sensory holographic energy propagation paths including visual, acoustic, tactile or other energy domains. [0084]In an embodiment, the seamless energy surface is configured with energy relays that comprise two or more first sides for each second side to both receive and emit one or more energy domains simultaneously to provide bi-directional energy propagation throughout the system. [0085]In an embodiment, the energy relays are provided as loose coherent elements. Introduction to Component Engineered Structures Disclosed Advances in Transverse Anderson Localization Energy Relays [0086]The properties of energy relays may be significantly optimized according to the principles disclosed herein for energy relay elements that induce Transverse Anderson Localization. Transverse Anderson Localization is the propagation of a ray transported through a transversely disordered but longitudinally consistent material. [0087]This implies that the effect of the materials that produce the Anderson Localization phenomena may be less impacted by total internal reflection than by the randomization between multiple-scattering paths where wave interference can completely limit the propagation in the transverse orientation while continuing in the longitudinal orientation. [0088]Of significant additional benefit is the elimination of the cladding of traditional multi-core optical fiber materials. The cladding is to functionally eliminate the scatter of energy between fibers, but simultaneously act as a barrier to rays of energy thereby reducing transmission by at least the core to clad ratio (e.g., a core to clad ratio of 70:30 will transmit at best 70% of received energy transmission) and additionally forms a strong pixelated patterning in the propagated energy. [0089]FIG. 5A illustrates an end view of an example of one such non-Anderson Localization energy relay 500, wherein an image is relayed through multi-core optical fibers where pixilation and fiber noise may be exhibited due to the intrinsic properties of the optical fibers. With traditional multi-mode and multi-core optical fibers, relayed images may be intrinsically pixelated due to the properties of total internal reflection of the discrete array of cores where any cross-talk between cores will reduce the modulation transfer function and increase blurring. The resulting imagery produced with traditional multi-core optical fiber tends to have a residual fixed noise fiber pattern similar to those shown in FIG. 3. [0090]FIG. 5B, illustrates an example of the same relayed image 550 through an energy relay comprising materials that exhibit the properties of Transverse Anderson Localization, where the relayed pattern has a greater density grain structures as compared to the fixed fiber pattern from FIG. 5A. In an embodiment, relays comprising randomized microscopic component engineered structures induce Transverse Anderson Localization and transport light more efficiently with higher propagation of resolvable resolution than commercially available multi-mode glass optical fibers. [0091]There is significant advantage to the Transverse Anderson Localization material properties in terms of both cost and weight, where a similar optical grade glass material, may cost and weigh upwards of 10 to 100-fold more than the cost for the same material generated within an embodiment, wherein disclosed systems and methods comprise randomized microscopic component engineered structures demonstrating significant opportunities to improve both cost and quality over other technologies known in the art. [0092]In an embodiment, a relay element exhibiting Transverse Anderson Localization may comprise a plurality of at least two different component engineered structures in each of three orthogonal planes arranged in a dimensional lattice and the plurality of structures form randomized distributions of material wave propagation properties in a transverse plane within the dimensional lattice and channels of similar values of material wave propagation properties in a longitudinal plane within the dimensional lattice, wherein energy waves propagating through the energy relay have higher transport efficiency in the longitudinal orientation versus the transverse orientation and are spatially localized in the transverse orientation. [0093]In an embodiment, multiple energy domains may be configured within a single, or between multiple Transverse Anderson Localization energy relays to direct one or more sensory holographic energy propagation paths including visual, acoustic, tactile or other energy domains. [0094]In an embodiment, the seamless energy surface is configured with Transverse Anderson Localization energy relays that comprise two or more first sides for each second side to both receive and emit one or more energy domains simultaneously to provide bi-directional energy propagation throughout the system. [0095]In an embodiment, the Transverse Anderson Localization energy relays are configured as loose coherent or flexible energy relay elements. Considerations for 4D Plenoptic Functions Selective Propagation of Energy Through Holographic Waveguide Arrays [0096]As discussed above and herein throughout, a light field display system generally includes an energy source (e.g., illumination source) and a seamless energy surface configured with sufficient energy location density as articulated in the above discussion. A plurality of relay elements may be used to relay energy from the energy devices to the seamless energy surface. Once energy has been delivered to the seamless energy surface with the requisite energy location density, the energy can be propagated in accordance with a 4D plenoptic function through a disclosed energy waveguide system. As will be appreciated by one of ordinary skill in the art, a 4D plenoptic function is well known in the art and will not be elaborated further herein. [0097]The energy waveguide system selectively propagates energy through a plurality of energy locations along the seamless energy surface representing the spatial coordinate of the 4D plenoptic function with a structure configured to alter an angular direction of the energy waves passing through representing the angular component of the 4D plenoptic function, wherein the energy waves propagated may converge in space in accordance with a plurality of propagation paths directed by the 4D plenoptic function. [0098]Reference is now made to FIG. 6 illustrating an example of light field energy surface in 4D image space in accordance with a 4D plenoptic function. The figure shows ray traces of an energy surface 600 to a viewer 620 in describing how the rays of energy converge in space 630 from various positions within the viewing volume. As shown, each waveguide element 610 defines four dimensions of information describing energy propagation 640 through the energy surface 600. Two spatial dimensions (herein referred to as x and y) are the physical plurality of energy locations that can be viewed in image space, and the angular components theta and phi (herein referred to as u and v), which is viewed in virtual space when projected through the energy waveguide array. In general, and in accordance with a 4D plenoptic function, the plurality of waveguides (e.g., lenslets) are able to direct an energy location from the x, y dimension to a unique location in virtual space, along a direction defined by the u, v angular component, in forming the holographic or light field system described herein. [0099]However, one skilled in the art will understand that a significant challenge to light field and holographic display technologies arises from uncontrolled propagation of energy due designs that have not accurately accounted for any of diffraction, scatter, diffusion, angular direction, calibration, focus, collimation, curvature, uniformity, element cross-talk, as well as a multitude of other parameters that contribute to decreased effective resolution as well as an inability to accurately converge energy with sufficient fidelity. [0100]In an embodiment, an approach to selective energy propagation for addressing challenges associated with holographic display may include energy inhibiting elements and substantially filling waveguide apertures with near-collimated energy into an environment defined by a 4D plenoptic function. [0101]In an embodiment, an array of energy waveguides may define a plurality of energy propagation paths for each waveguide element configured to extend through and substantially fill the waveguide element's effective aperture in unique directions defined by a prescribed 4D function to a plurality of energy locations along a seamless energy surface inhibited by one or more elements positioned to limit propagation of each energy location to only pass through a single waveguide element. [0102]In an embodiment, multiple energy domains may be configured within a single, or between multiple energy waveguides to direct one or more sensory holographic energy propagations including visual, acoustic, tactile or other energy domains. [0103]In an embodiment, the energy waveguides and seamless energy surface are configured to both receive and emit one or more energy domains to provide bi-directional energy propagation throughout the system. [0104]In an embodiment, the energy waveguides are configured to propagate non-linear or non-regular distributions of energy, including non-transmitting void regions, leveraging digitally encoded, diffractive, refractive, reflective, grin, holographic, Fresnel, or the like waveguide configurations for any seamless energy surface orientation including wall, table, floor, ceiling, room, or other geometry based environments. In an additional embodiment, an energy waveguide element may be configured to produce various geometries that provide any surface profile and/or tabletop viewing allowing users to view holographic imagery from all around the energy surface in a 360-degree configuration. [0105]In an embodiment, the energy waveguide array elements may be reflective surfaces and the arrangement of the elements may be hexagonal, square, irregular, semi-regular, curved, non-planar, spherical, cylindrical, tilted regular, tilted irregular, spatially varying and/or multi-layered. [0106]For
返回