具体实施方式:
[0023]In one embodiment, the present disclosure is directed to an upper for an article of footwear comprising a traced element including a first polymer layer, a second polymer layer, and a strand layer. The first polymer layer defines a polymer-trace path, and the strand layer comprises a material strand disposed along a strand-trace path and over the first polymer layer. Furthermore, the second polymer layer is disposed along at least a portion of the polymer-trace path and overlaps both the first polymer layer and the strand layer for at least a portion of the polymer-trace path, and the traced element includes a plurality of openings surrounded by the first polymer layer, the strand layer, and the second polymer layer.
[0024]In another embodiment, the present disclosure is directed to an upper for an article of footwear having a traced element comprising a textile strand, a first portion of polymer material facing inward toward an interior of the upper, and a second portion of polymer material facing outward toward an exterior of the upper. The textile strand is disposed along and defines a strand-trace path having a plurality of curvilinear portions, and the first portion of polymer material and the second portion of polymer material are disposed along a first polymer-trace path and a second polymer-trace path, respectively, each having a plurality of curvilinear portions. In addition, an average width of the textile strand is at least 5 percent of an average width of the first portion of polymer material. The traced element extends over at least 50 percent of the horizontal extent of the upper (the horizontal extent being a distance between a foremost portion of the upper and a rearmost portion of the upper), and the traced element extends over at least 50 percent of a vertical extent of the upper (the vertical extent being a distance between a bottommost portion of the upper and a topmost portion of the upper.) Furthermore, the traced element includes a plurality of openings surrounded by one or more portions of the textile strand, the first portion of polymer material, and the second portion of polymer material.
[0025]In another embodiment, the present disclosure is directed to an article of footwear including an upper and a sole structure, the upper comprising a traced element including a textile strand, a first polymer layer, and a second polymer layer. The textile strand is disposed along a strand-trace path, the first polymer layer and the second polymer layer comprise a first polymer-trace path and a second polymer-trace path, respectively, and the traced element defines a plurality of openings surrounded by one or more textile strands, the first polymer layer, and the second polymer layer. Furthermore, the traced element extends over at least 50 percent of the horizontal extent of the upper, and the traced element extends over at least 50 percent of the vertical extent of the upper. In addition, the sole structure is secured to the upper and at least partially secured to the traced element and forms at least part of a ground-contacting surface of the article of footwear.
[0026]In another embodiment, the present disclosure is directed to a method of manufacturing an upper for an article of footwear; the method includes the steps of depositing a first layer of polymer material on a receiving layer and along a polymer-trace path, positioning a strand along a strand-trace path and over the first layer of polymer material, and depositing a second layer of polymer material along the polymer-trace path and over both the first layer of polymer material and the strand. In addition, the first layer of polymer material, the strand, and the second layer of polymer material surround a plurality of openings.
[0027]Other systems, methods, features, and advantages of the embodiments will be, or will become, apparent to one of ordinary skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description and this summary, be within the scope of the embodiments, and be protected by the following claims.
[0028]FIG. 1 is a schematic view of an embodiment of a three-dimensional printing system 100, also referred to simply as printing system 100 hereafter. Printing system 100 may further comprise a printing device 102, a computing system 104, and a network 106. In different embodiments, structures may be formed using an additive manufacturing process, also referred to as three-dimensional printing (or simply “printing” hereafter). The term “additive manufacturing,” also referred to as “three-dimensional printing,” refers to any device and technology for making a three-dimensional object through an additive process where layers of material are successively laid down under the control of a computer. Exemplary additive manufacturing techniques that could be used include, but are not limited to, extrusion methods such as fused deposition modeling (FDM), electron beam freeform fabrication (EBF), direct metal laser sintering (DMLS), electron beam melting (EBM), selective laser melting (SLM), selective heat sintering (SHS), selective laser sintering (SLS), plaster-based 3D printing, laminated object manufacturing (LOM), stereolithography (SLA), and digital light processing (DLP). In one embodiment, an additive manufacturing device could be a fused deposition modeling type printer configured to print thermoplastic materials such as acrylonitrile butadiene styrene (ABS) or polyactic acid (PLA).
[0029]Additive manufacturing processes may be used to form structures on flat receiving surfaces as well as on contoured or non-flat surfaces. For example, some embodiments depicted in the figures may illustrate methods whereby material is printed onto a flattened surface of an article, such as a material section of an upper that has a flat or unassembled configuration. In such cases, printing material onto the surface may be accomplished by depositing material in thin layers that are also flat. Thus, a print head or nozzle may move in one or more horizontal directions to apply an Nth layer of material and then move in the vertical direction to begin forming the N+1 layer. However, it should be understood that in other embodiments material could be printed onto a contoured or non-flat surface. For example, material could be printed onto a three-dimensional last, where the surface of the last is not flat. In such cases, the printed layers applied to the surface may also be contoured. In order to accomplish this method of printing, a print head or nozzle may be configured to move along a contoured surface and tilt, rotate, or otherwise move so that the print head or nozzle is always aligned approximately normal to the surface where printed material is being applied. In some cases, a print head could be mounted to a robotic arm, such as an articulated robotic arm with six degrees of freedom. Alternatively, in still other embodiments, an object with a contoured surface could be reoriented under a nozzle so that contoured layers of printed material could be applied to the object. For example, embodiments could make use of any of the systems, features, components, and/or methods disclosed in Mozeika et al., U.S. Patent Publication No. 2013/0015596, published Jan. 17, 2013 (and filed as U.S. application Ser. No. 13/530,664 on Jun. 22, 2012), titled “Robotic fabricator,” the entirety of which is herein incorporated by reference. Embodiments could also make use of any of the systems, features, components, and/or methods disclosed in Cannell et al., U.S. Pat. Number 8,123,350, issued Feb. 28, 2012, titled “Computerized apparatus and method for applying graphics to surfaces,” the entirety of which is herein incorporated by reference. Thus, it may be appreciated that the present embodiments are not limited to printing processes used for printing to flat surfaces and may be used in conjunction with printing systems that can print to any kinds of surfaces having any kinds of geometry.
[0030]For consistency and convenience, directional adjectives are employed throughout this detailed description corresponding to the illustrated embodiments. The term “longitudinal,” as used throughout this detailed description and in the claims, refers to a direction extending a length of a component. The term “longitudinal axis,” as used throughout this detailed description and in the claims, refers to an axis oriented in a longitudinal direction.
[0031]The term “lateral direction,” as used throughout this detailed description and in the claims, refers to a side-to-side direction extending a width of a component. For example, the lateral direction may extend between a medial side and a lateral side of an article of footwear, with the lateral side of the article of footwear being the surface that faces away from the other foot, and the medial side being the surface that faces toward the other foot. The term “lateral axis,” as used throughout this detailed description and in the claims, refers to an axis oriented in a lateral direction.
[0032]The term “horizontal,” as used throughout this detailed description and in the claims, refers to any direction substantially parallel with the longitudinal direction, the lateral direction, and all directions in between. In cases where a component is placed on the ground, a horizontal direction may be parallel with the ground.
[0033]The term “vertical,” as used throughout this detailed description and in the claims, refers to a direction generally perpendicular to both the lateral and longitudinal directions, along a vertical axis. For example, in cases where a component is flat on a ground surface, the vertical direction may extend from the ground surface upward.
[0034]It will be understood that each of these directional adjectives may be applied to individual components of a sole. Furthermore, the term “outer surface” as used throughout this detailed description and in the claims, refers to the surface of a component that would be facing away from the foot when worn by a wearer. “Inner surface,” or “inner side” as used throughout this detailed description and in the claims, refers to the surface of a component that is facing inward, or the surface that faces toward the foot when worn by a wearer.
[0035]For purposes of this disclosure, the foregoing directional terms, when used in reference to an article of footwear or another article of apparel, shall refer to the article of footwear when sitting in an upright position, with the sole facing groundward, that is, as it would be positioned when worn by a wearer standing on a substantially level surface.
[0036]In the embodiments shown in the figures, printing system 100 may be associated with fused filament fabrication (FFF), also referred to as fused deposition modeling. An example of a printing device using fused filament fabrication (FFF) is disclosed in Crump, U.S. Pat. No. 5,121,329, filed Oct. 30, 1989 and titled “Apparatus and Method for Creating Three-Dimensional Objects,” which application is herein incorporated by reference and referred to hereafter as the “3D Objects” application. Embodiments of the present disclosure can make use of any of the systems, components, devices, and methods disclosed in the 3D Objects application.
[0037]Printing device 102 may include a housing 110 that supports various systems, devices, components or other provisions that facilitate the three-dimensional printing of objects (e.g., parts, components, or structures). Although the exemplary embodiment depicts a particular rectangular box-like geometry for housing 110, other embodiments could use any housing having any geometry and/or design. The shape and size of housing 110 could be varied according to factors including a desired footprint for the device, the size and shape of parts that may be formed within printing device 102, as well as possibly other factors. It will be understood that housing 110 could be open (e.g., provide a frame with large openings) or closed (e.g., with glass or panels of solid material and a door).
[0038]In some embodiments, printing device 102 may include provisions to retain or hold a printed object (or a component supporting the printed object). In some embodiments, printing device 102 may include a table, platform, tray or similar component to support, retain, and/or hold a printed object or an object onto which printed material is being applied. In the embodiment of FIG. 1, printing device 102 includes a tray 112. In some embodiments, tray 112 may be fixed in place and act as a stable base. In other embodiments, however, tray 112 could move. For example, in some cases, tray 112 may be configured to translate within housing 110 in a horizontal direction (e.g., front-back and/or left-right with respect to housing 110) as well as a vertical direction (e.g., up-down within housing 110). Moreover, in some cases, tray 112 may be configured to rotate and/or tilt about one or more axes associated with tray 112. Thus, it is contemplated that in at least some embodiments, tray 112 may be moved into any desired relative configuration with a nozzle or print head of printing device 102. In other embodiments, printing device 102 may not include tray 112. In some embodiments, tray 112 may be curved, irregularly shaped, or shaped to provide a customized platform upon which an article or object may be placed or secured. In some embodiments, printing device 102 may include an open space or cavity formed within tray 112.
[0039]In some embodiments, printing device 102 may include one or more systems, devices, assemblies, or components for delivering a printed material (or printed substance) to a target location. Target locations could include the surface of tray 112, and/or a surface or portion of a receiving layer, base layer, or other component. The target location or receiving layer may also be referred to as a print surface 148. In different embodiments, provisions for delivering printed materials include, for example, print heads and nozzles. In the embodiment of FIG. 1, printing device 102 includes a nozzle assembly 116.
[0040]In some embodiments, nozzle assembly 116 is associated with an actuating system 114. Actuating system 114 may include various components, devices, and systems that facilitate the motion of nozzle assembly 116 within housing 110. In particular, actuating system 114 may include provisions to move nozzle assembly 116 in any horizontal direction. Horizontal directions can include longitudinal directions, referred to herein as a third direction 164, and/or lateral directions, also referred to herein as a second direction 162, or any other direction lying along the horizontal plane. Actuating system 114 may also include provisions to move nozzle assembly 116 in any vertical direction, identified herein as a first direction 160. The movement of nozzle assembly 116 in various directions can facilitate the process of depositing a material so as to form a three-dimensional object or to print along a three-dimensional or curved surface. To this end, embodiments of actuating system 114 may include one or more tracks, rails, and/or similar provisions to hold nozzle assembly 116 at various positions and/or orientations within housing 110. Embodiments may also include any kinds of motors, such as a stepper motor or a servo motor, to move nozzle assembly 116 along a track or rail, and/or to move one or more tracks or rails relative to one another.
[0041]An actuating system can be configured to move a nozzle in one or more directions. In some embodiments, an actuating system could move a nozzle in a single linear direction. In other embodiments, an actuating system could move a nozzle in at least two perpendicular directions. In still other embodiments, an actuating system could move a nozzle in three perpendicular directions. For example, in the exemplary embodiment shown in FIG. 1, actuating system 114 may be configured to move nozzle 118 (see FIG. 2) in first direction 160, second direction 162, and third direction 164. As seen in FIG. 1, first direction 160 may be associated with a vertical direction of housing 110, while second direction 162 and third direction 164 may be associated with horizontal directions of housing 110 (e.g., length and width directions). Of course, while the exemplary embodiment depicts an actuating system capable of moving a nozzle through three independent x-y-z or Cartesian directions, other embodiments may be configured to move a nozzle in three independent directions associated with a non-Cartesian coordinate system (e.g., a spherical coordinate system, a cylindrical coordinate system, etc.). Still further, in other cases, an actuating system could move a nozzle through three different directions that may not be orthogonal (e.g., directions of an oblique coordinate system).
[0042]In certain embodiments, first direction 160 is approximately normal to a surface, such as a print surface 148. As used herein, a direction is approximately normal to a surface when it is within 10 degrees from perpendicular to the surface. For example, as shown, first direction 160 is approximately normal to print surface 148.
[0043]For purposes of this discussion, a print surface may correspond to the surface where a nozzle is printing. For example, in cases where nozzle 118 prints directly onto tray 112, the print surface is associated with a surface of tray 112. In the embodiment of FIG. 1, print surface 148 is illustrated as the side of tray 112 that faces upward toward nozzle assembly 116. However, it should be noted that in other embodiments, print surface 148 may comprise the surface or side of an article or object that is printed upon by nozzle 118. Print surface 148 may be generally flat, or it may be substantially curved and include contours.
[0044]In certain embodiments, printing system 100 can selectively move nozzle 118. In one embodiment, printing system 100 simultaneously moves nozzle 118 in three directions. For example, printing system 100 may move nozzle 118 in first direction 160 away from tray 112 while simultaneously moving nozzle 118 in second direction 162 and/or in third direction 164 over print surface 148. In another example, a position along a direction is maintained while printing system 100 selectively moves nozzle 118 in another direction. Printing system 100 may move nozzle 118 in first direction 160 to or away from print surface 148 while simultaneously maintaining a base position of nozzle 118 in second direction 162 and in third direction 164 over print surface 148.
[0045]In some embodiments, actuating system 114 can be operated manually by a user. In other embodiments, there may be provisions for automating the operation of actuating system 114. For example, some embodiments could include motors and/or other provisions for automatically driving nozzle 118 to various positions along one or more tracks. Moreover, in automated embodiments, the position or speed of nozzle 118 could be adjusted using controls provided in printing system 100, or using an associated system, such as computing system 104, which is discussed in further detail below.
[0046]It will be understood that for purposes of illustration, the components, devices, and systems of printing device 102 are shown schematically in FIG. 1. It will therefore be appreciated that embodiments may include additional provisions not shown, including specific parts, components, and devices that facilitate the operation of actuating system 114, and nozzle assembly 116. For example, actuating system 114 is shown schematically as including several tracks or rails, but the particular configuration and number of parts comprising actuating system 114 may vary from one embodiment to another.
[0047]As discussed above, printing system 100 can include provisions to control and/or receive information from printing device 102. These provisions can include a computing system 104 and a network 106. Generally, the term “computing system” refers to the computing resources of a single computer, a portion of the computing resources of a single computer, and/or two or more computers in communication with one another. Any of these resources can be operated by one or more human users. In some embodiments, computing system 104 may include one or more servers. In some cases, a print server may be primarily responsible for controlling and/or communicating with printing device 102, while a separate computer (e.g., desktop, laptop, or tablet) may facilitate interactions with a user. Computing system 104 can also include one or more storage devices including, but not limited to, magnetic, optical, magneto-optical, and/or memory, including volatile memory and non-volatile memory.
[0048]In the exemplary embodiment of FIG. 1, computing system 104 may comprise a central processing device 185, a viewing interface 186 (e.g., a monitor or screen), input devices 187 (e.g., keyboard and mouse), and software for designing a computer-aided design (“CAD”) representation of a traced element (traced elements will be discussed further below). In at least some embodiments, the CAD representation of a traced element may include not only information about the geometry of the structure but also information related to the materials required to print various portions of the structure.
[0049]In some embodiments, computing system 104 may be in direct contact with printing device 102 via network 106. Network 106 may include any wired or wireless provisions that facilitate the exchange of information between computing system 104 and printing device 102. In some embodiments, network 106 may further include various components such as network interface controllers, repeaters, hubs, bridges, switches, routers, modems and firewalls. In some cases, network 106 may be a wireless network that facilitates wireless communication between two or more systems, devices, and/or components of printing system 100. Examples of wireless networks include, but are not limited to, wireless personal area networks (including, for example, Bluetooth), wireless local area networks (including networks utilizing the IEEE 802.11 WLAN standards), wireless mesh networks, mobile device networks as well as other kinds of wireless networks. In other cases, network 106 could be a wired network including networks whose signals are facilitated by twister pair wires, coaxial cables, and optical fibers. In still other cases, a combination of wired and wireless networks and/or connections could be used.
[0050]Printing system 100 may be operated as follows to provide one or more structures that have been formed using a 3D printing, or additive, process. Computing system 104 may be used to design a structure. This may be accomplished using some type of CAD software, or other kind of software. The design may then be transformed into information that can be interpreted by printing device 102 (or a related print server in communication with printing device 102). In some cases, the design may be converted to a 3D printable file, such as a stereolithography file (STL file).
[0051]Although some of the embodiments shown in the figures depict a system using fused filament fabrication printing technologies, it will be understood that still other embodiments could incorporate one or more different 3D printing technologies. For example, printing system 100 may use a tack and drag print method, as described in the Tack and Drag case. Moreover, still other embodiments could incorporate a combination of fused filament fabrication and another type of 3D printing technique to achieve desired results for a particular traced element or part.
[0052]In different embodiments, printing device 102 may use a variety of different materials for forming 3D parts, including, but not limited to, thermoplastics (e.g., polyactic acid and acrylonitrile butadiene styrene), high density polyethylene, eutectic metals, rubber, clays (including metal clays), Room Temperature Vulcanizing silicone (RTV silicone), porcelain, as well as possibly other kinds of materials known in the art. In embodiments where two or more different printed or extruded materials are used to form a part, any two or more of the materials disclosed above could be used. In some embodiments, printing device 102 may extrude, discharge, or use a material or thread composition as described in U.S. Pat. No. 9,410,270, issued Aug. 9, 2016, (previously U.S. patent application No. 14/466,319, filed Aug. 22, 2014), titled “Thread Structure Composition and Method of Making,” the disclosure of which is hereby incorporated by reference in its entirety, and is hereinafter referred to as the “Thread Structure Composition” case.
[0053]Furthermore, additive printing systems used with the embodiments can make use of any printable material. The term “printed material” or “deposited material” is intended to encompass any materials that may be printed, ejected, emitted, or otherwise deposited during an additive manufacturing process. Such materials can include, but are not limited to, thermoplastics (e.g., PLA and ABS) and thermoplastic powders, high-density polyurethylene, eutectic metals, rubber, modeling clay, plasticine, RTV silicone, porcelain, metal clay, ceramic materials, plaster, and photopolymers, as well as possibly other materials known for use in 3D printing. In different embodiments, printed materials can also include polymers such as thermoplastic polymers as well as various types of strands, as will be discussed further below.
[0054]Furthermore, while the disclosed embodiments are described in the context of footwear, the disclosed embodiments may further be equally applied to any article of apparel or equipment that may be formed by 3D printing. Thus, as used throughout this disclosure, the term “article of apparel” may refer to any apparel or clothing, including any article of footwear, as well as hats, caps, shirts, jerseys, jackets, socks, shorts, pants, undergarments, athletic support garments, gloves, wrist/arm bands, sleeves, headbands, any knit material, any woven material, any nonwoven material, etc. Other examples of articles include, but are not limited to, shin guards, knee pads, elbow pads, shoulder pads, as well as any other type of protective equipment. Additionally, in some embodiments, the article could be another type of article that is not configured to be worn, including, but not limited to, balls, bags, purses, backpacks, as well as other articles that may not be worn.
[0055]In some embodiments, printing device 102 may be capable of printing onto the surfaces of various kinds of base layer materials. Specifically, in some cases, printing device 102 may be capable of printing onto the surfaces of various base layer materials such as textile, natural fabric, synthetic fabric, knit, woven material, nonwoven material, mesh, leather, synthetic leather, polymer, rubber, and foam, or any combination of them, without the need for a release layer interposed between a substrate and the bottom of the printed material, and without the need for a perfectly or near-perfectly flat substrate surface on which to print. For example, the disclosed methods may include printing a resin, acrylic, thermoplastic material or ink material onto a fabric, for example a knit material, where the material is adhered/bonded to the fabric and where the material does not generally delaminate when flexed, rolled, worked, or subject to additional assembly processes/steps. As used throughout this disclosure, the term “fabric” may be used to refer generally to materials chosen from any textile, natural fabric, synthetic fabric, knit, woven material, nonwoven material, mesh, leather, synthetic leather, polymers, rubbers, and foam. However, although some embodiments may use printing device 102 to print structures directly onto the surface of a material, other embodiments may include steps of printing a structure onto a tray or release paper, and then removing or releasing the traced element in a separate step.
[0056]Referring now to FIG. 2, in some embodiments, printing device 102 may be configured to print one or more layered structures. For example, as shown in FIG. 2, a first layered structure (“first structure”) 204 is depicted in the process of being formed by printing device 102. As seen in the magnified view provided in FIG. 2, first structure 204 comprises a portion of an unassembled upper for an article of footwear. A dotted lined outline 250 is intended to represent the contours of an example upper. In other embodiments, first structure 204 can comprise any type of component or structure for an article of footwear or apparel. In some embodiments, first structure 204 may be a heel counter or a shirt, for example. For purposes of this description, the surface of tray 112 or the layer upon which printing directly occurs will be referred to as print surface 148.
[0057]As will be described further below, in different embodiments, various layers may be printed during the formation of first structure 204. For example, a layered structure can be printed or deposited directly upon tray 112. In addition, a textile strand can be deposited directly on a first layer of first structure 204. The process will now be described in more detail with reference to FIGS. 3-10.
[0058]Nozzle assembly 116 may comprise one or more nozzles that deliver a printed material to a target location. For purposes of clarity, the embodiment of FIGS. 2-11 depicts a single nozzle 118 of nozzle assembly 116. However, in other embodiments, nozzle assembly 116 could be configured with any number of nozzles, which could be arranged in an array or any particular configuration. In embodiments comprising two or more nozzles, the nozzles could be configured to move together and/or independently.
[0059]In addition, as shown in FIG. 2, nozzle 118 may be configured with a nozzle aperture 119 that can be opened and/or closed to control the flow of material exiting from nozzle 118. Specifically, nozzle aperture 119 may be in fluid communication with a nozzle channel 121 that receives a supply of material from a material source (not shown) within printing device 102. Some examples of materials that may be received or used or methods of three-dimensional printing that can be utilized with the embodiments discussed herein are disclosed in not-yet-published U.S. patent application Ser. No. 14/935,731, filed Nov. 9, 2015), titled “Tack and Drag Printing,” which application is herein incorporated by reference in its entirety, and hereinafter referred to as the “Tack and Drag” case.
[0060]In some embodiments, a worm-drive may be used to push the filament into nozzle 118 at a specific rate (which may be varied to achieve a desired volumetric flow rate of material from nozzle 118). In other embodiments, a worm-drive is omitted. For example, the material may be pulled from nozzle 118 using an actuating system. It will be understood that in some cases, the supply of material could be provided at a location near nozzle 118 (e.g., in a portion of nozzle assembly 116), while in other embodiments the supply of material could be located at some other location of printing device 102 and fed via tubes, conduits, or other provisions, to nozzle assembly 116.
[0061]Referring now to FIG. 3, a schematic view of a portion of an upper 390 (shown in dotted lines) with a second structure 304 is illustrated. Second structure 304 comprises a polymer casing 320 (comprising at least a first layer of polymer and a second layer of polymer) surrounding a substantial majority of a textile strand 322. In different embodiments, an upper as described herein may include multiple layers, which may individually or collectively provide an article of footwear with a number of attributes, such as support, flexibility, stability, cushioning, comfort, reduced weight, or other attributes. In some embodiments, the layered structure may comprise a traced element, as will be discussed below. Thus, in some embodiments, an upper may be a layered structure. For purposes of this disclosure, a layer refers to a segment or portion of the upper that extends along a horizontal direction or is disposed within a substantially similar level of the upper. In one embodiment, the layer can be likened to a stratum in the earth, for example. In other words, a layer can be a horizontally arranged section of the upper that can be disposed above, between, or below ot