Additive manufacturing of iron-based amorphous metal alloys

公开(公告)号:
US20220372604A1
公开(公告)日:
2022-11-24
申请号:
US17/882525
申请日:
2022-08-05
授权日:
-
受理局:
美国
专利类型:
发明申请
简单法律状态:
审中
法律状态/事件:
实质审查
IPC分类号:
C22C45/02 | B22F1/05 | B33Y70/00 | B22F1/052 | B22F1/08 | B22F1/10
战略新兴产业分类:
先进有色金属材料
国民经济行业分类号:
C3516 | C4330 | C4320 | C4090 | C3493 | C3240 | C3140
当前申请(专利权)人:
CORNERSTONE INTELLECTUAL PROPERTY, LLC
原始申请(专利权)人:
CORNERSTONE INTELLECTUAL PROPERTY LLC
当前申请(专利权)人地址:
26497 RANCHO PARWAY, 92630, SOUTH LAKE FOREST, CALIFORNIA
工商统一社会信用代码:
-
工商登记状态:
-
工商注册地址:
-
工商成立日期:
-
工商企业类型:
-
发明人:
KANG, JOHN | SALAS, RICARDO | VOGLI, EVELINA
代理机构:
-
代理人:
-
摘要:
Embodiments disclosed herein relate to the production of amorphous metals having compositions of iron, chromium, molybdenum, carbon and boron for usage in additive manufacturing, such as in layer-by-layer deposition to produce multi-functional parts. Such parts demonstrate ultra-high strength without sacrificing toughness and also maintain the amorphous structure of the materials during and after manufacturing processes. Two additive manufacturing techniques are provided: (1) the complete melting of amorphous powder and re-solidifying to amorphous structure to eliminate the formation of crystalline structure therein by controlling a heating source power and cooling rate without affecting previous deposited layers; and (2) partial melting of the outer surface of the amorphous powder, and solidifying powder particles with each-other without undergoing a complete melting stage. Amorphous alloy compositions have oxygen impurities in low concentration levels to optimize glass forming ability (GFA). Specific techniques of additive manufacturing include those based on lasers, electron beams and ultrasonic sources.
技术问题语段:
The patent text discusses the challenge of producing amorphous metallic alloys for additive manufacturing, as rapid cooling rates are required to prevent the formation of crystalline phases. The technical problem addressed in the patent is to develop an amorphous metal with a unique composition that can provide additional versatility for additive manufacturing, and can be deposited without affecting previously deposited amorphous metal layers.
技术功效语段:
The patent describes a new amorphous alloy composition with up to 0.2 at. % oxygen that has higher glass-forming ability than a comparable alloy with greater than 0.2 at. % oxygen. This means that the alloy can generate a layer of amorphous material when exposed to wear, load, or friction. The patent also describes a method for producing a metallic alloy specimen by melting and re-solidifying amorphous feedstock.
权利要求:
1. A composition comprising a feedstock comprising an amorphous alloy composition comprising iron, chromium, molybdenum, carbon and boron, wherein a level of oxygen in the feedstock is up to 0.2 at. % oxygen. 2. The composition of claim 1, wherein the amorphous alloy composition has a formula of Fe100-(a+b+c+d)CraMobCcBd, wherein a, b, c and d represent an atomic percentage. 3. The composition of claim 1, wherein: a is in the range of 10 at. % to 35 at. %; b is in the range of 10 at. % to 20 at. %; c is in the range of 2 at. % to 5 at. %; and d is in the balance of 0.5% at. % to 3.5 at. %. 4. The composition of claim 1, wherein the feedstock containing the amorphous alloy composition and having up to 0.2 at. % oxygen has a glass-forming ability higher than that of a comparable feedstock having a comparable amorphous alloy composition having a same composition as that of the amorphous alloy composition and the level of the oxygen greater than 0.2 at. % oxygen. 5. The composition of claim 4, wherein the glass forming ability is a property to generate a layer of an amorphous material when the feedstock or the comparable feedstock is exposed to wear, load or friction. 6. The composition of claim 1, wherein the amorphous alloy composition is in a powder form. 7. The composition of claim 6, wherein the powder has a sphericity of more than 80%. 8. The composition of claim 6, wherein the powder has a flowability of less than 20 seconds per 50 grams. 9. The composition of claim 6, wherein the powder has a particle size larger than 10 micrometers. 10. The composition of claim 9, wherein the powder has the particle size is greater than 10 micrometers and less than 60 micrometers. 11. The composition of claim 6, wherein the powder has a packing density about 30%. 12. The composition of claim 1, wherein the feedstock is in a wire form. 13. The composition of claim 1, wherein the feedstock is in powder form. 14. The composition of claim 1, wherein the feedstock is in a foil form. 15. The composition of claim 2, wherein the amorphous alloy composition has an endothermic peak between 550° C. and 750° C. in a DSC graph. 16. The composition of claim 1, wherein the amorphous alloy composition is not fully amorphous. 17. The composition of claim 1, wherein the feedstock has equal or less than 0.15 at. % oxygen. 18. A composition comprising an amorphous alloy composition having a formula Fe(100−a+b+c+d)(CraXbYcZd), wherein the Y component is selected from the group consisting of boron, carbon and combinations thereof, while the X and Z components is selected from the group consisting of molybdenum, copper, cobalt, aluminum, titanium, tungsten, niobium, silicon, vanadium, and combinations thereof; wherein a, b, c and d represent an atomic percentage, wherein an oxygen level of the composition is up to 0.2 at. % oxygen. 19. The composition of claim 18, wherein the amorphous alloy composition has: ‘a’ in the range of 10 at. % to 50 at. %; ‘b’ in the range of 10 at. % to 30 at %; ‘c’ in the range of 2 at. % to 10 at %, and ‘d’ in the range of 0.5 at. % to 10 at %. 20. The composition of claim 18, wherein the composition having up to 0.2 at % oxygen and the amorphous alloy composition has a glass-forming ability that is higher than that of a comparable composition having a comparable amorphous alloy composition having a same composition as that of the amorphous alloy composition and greater than 0.2 at % oxygen; wherein the glass forming ability is a property to generate a layer of an amorphous material when the composition or the comparable composition is exposed to wear, load or friction.
技术领域:
[0002]Disclosed herein are processes for preparing iron-based amorphous metals for use in additive manufacturing. The processes involve layer-by-layer deposition of the amorphous metals to produce multi-functional parts with ultra-high strength, without sacrificing toughness, resulting in produced parts showing superior corrosion and wear resistance due to their amorphous structure.
背景技术:
[0003]Compared to metallic alloy materials with a crystalline microstructure, “i[t] is widely known that metallic glasses are solid alloys [that] [exhibit] many superior properties”, where “[t]he unique properties [of metallic glasses] originate from [their] random atomic arrangement . . . that contrasts with the regular atomic lattice arrangement found in crystalline alloys.” [Source: “Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element”; Takeuchi, A.; Inoue, A.; Materials Transactions, Vol. 46, No. 12 (2005) pp. 2817 to 2829]. [0004]And, “[t]he mechanical properties of amorphous alloys have proven both scientifically unique and of potential practical interest, although the underlying deformation physics of these materials remain less firmly established as compared with crystalline alloys.” [Source: Mechanical behavior of amorphous alloys”; Schuh, C.; Hufnagel, T.; Ramamurty, U.; Acta Materialia 55 (2007) 4067 4109]. Further, “[t]he mechanics of metallic glasses have proven to be of fundamental scientific interest for their contrast with conventional crystalline metals, and also occupy a unique niche compared with other classes of engineering materials. For example, amorphous alloys generally exhibit elastic moduli on the same order as conventional engineering metals . . . but have room-temperature strengths significantly in excess of those of polycrystals with comparable composition . . . . The consequent promise of high strength with non-negligible toughness has inspired substantial research effort on the room-temperature properties of metallic glasses.” [Source: Mechanical behavior of amorphous alloys”; Schuh, C.; Hufnagel, T.; Ramamurty, U.; Acta Materialia 55 (2007) 4067 4109]. [0005]Therefore, methods of manufacturing have been developed to take advantage of the desirable physical properties of amorphous alloys. For example, U.S. Pat. No. 8,215,371, incorporated herein by reference in its entirety, discusses a method for building a three-dimensional object in a layer-by-layer manner, the method involving heating a build chamber, and feeding a solid feedstock thereto. The solid feedstock is made from of a modeling material having an amorphous metallic alloy and may be fed into a liquefier assembly of the build chamber. The modeling material of the solid feedstock in the liquefier assembly is heated to an extrudable state. The heated modeling material is deposited within the heated build chamber in a predetermined pattern to build the three-dimensional object. [0006]However, production of amorphous alloys for manufacturing remains challenging, given that “[i]t is essential for the formation of an amorphous phase by rapid solidification to suppress the nucleation and growth reaction of a crystalline phase in the supercooled liquid region between melting temperature (Tm) and Tg. The minimum cooling rate for glass formation (Re) has been reported to be above 104 K/s for Fe-, Co- and Ni-based amorphous alloys . . . etc.” [Source: High Strength Bulk Amorphous Alloys with Low Critical Cooling Rates; Inoue, A.; Materials Transactions, JIM Vol. 36, No. 7 (1995), pp. 866 to 875]. Such rapid cooling rates may limit the forms in which amorphous metallic alloys may be produced to ribbons, foils, or wires, in which one dimension is small enough to permit for the convenient extraction of heat to achieve the necessary cooling rate. [Source: U.S. Pat. No. 5,306,363 stating in part that: “[c]onventional amorphous alloys have been produced in the form of a ribbon, a wire, a powder or a coating film etc.]. [0007]Accordingly, it would be desirable to develop an amorphous metal having a unique composition such that the amorphous metal is capable of providing additional versatility for additive manufacturing. Moreover, additive manufacturing with such an amorphous metal may be conducted by controlling a heating source power and cooling rate without affecting previously deposited amorphous metal layers.
发明内容:
[0008]An embodiment relates to an amorphous alloy composition comprising: iron, chromium, molybdenum, carbon and boron, wherein an oxygen level of the amorphous alloy composition is up to 0.2 at. % oxygen. [0009]An embodiment relates to an amorphous alloy composition, wherein the amorphous alloy composition is by a formula of Fe100-(a+b+c+d)CraMobCcBd, wherein a, b, c and d represent an atomic percentage. [0010]An embodiment relates to an amorphous alloy composition, wherein the amorphous alloy composition is used for additive manufacturing. [0011]An embodiment relates to an amorphous alloy composition, wherein: a is in the range of 10 at. % to 35 at. %; b is in the range of 10 at. % to 20 at. %; c is in the range of 2 at. % to 5 at. %; and d is in the balance of 0.5% at. % to 3.5 at. %. [0012]An embodiment relates to an amorphous alloy composition, wherein the amorphous alloy composition is in powder form. [0013]An embodiment relates to an amorphous alloy composition, wherein the amorphous alloy composition having up to 0.2 at. % oxygen has a glass-forming ability that is higher than that of a comparable amorphous alloy composition having a same composition as that of the amorphous alloy composition except that that the comparable amorphous alloy composition contains greater than 0.2 at. % oxygen, wherein the glass forming ability is a property to generate a layer of an amorphous material when the amorphous alloy composition or the comparable amorphous alloy composition is exposed to wear, load or friction, and the glass forming ability being higher means that the property to generate the layer of the amorphous material when the amorphous alloy composition or the comparable amorphous alloy composition is exposed to wear, load or friction is greater. [0014]An embodiment relates to an amorphous alloy composition, wherein the powder has a sphericity of more than 80%. [0015]An embodiment relates to an amorphous alloy composition, wherein the powder has a flowability of less than 20 seconds per 50 grams. [0016]An embodiment relates to an amorphous alloy composition, wherein the powder has a particle size larger than 10 micrometers. [0017]An embodiment relates to an amorphous alloy composition, wherein the powder has a bimodal particle size distribution with fine particles as much as 30% in volume. [0018]An embodiment relates to a method for producing a metallic alloy specimen, the method comprising: melting amorphous feedstock having a composition of iron, chromium, molybdenum, carbon and boron, wherein an oxygen level of the amorphous alloy composition is up to 0.2 at. % oxygen; and re-solidifying the molten amorphous feedstock to eliminate formation of a crystalline structure therein by controlling a heating source power and a cooling rate without affecting previously deposited amorphous feedstock layers. [0019]An embodiment relates to a method, wherein the method comprises additive manufacturing. [0020]An embodiment relates to a method, wherein the amorphous alloy composition has a formula of Fe100-(a+b+c+d)CraMobCcBd, wherein a, b, c and d represent an atomic percentage. [0021]An embodiment relates to a method, wherein: a is in the range of 10 at. % to 35 at. %; b is in the range of 10 at. % to 20 at. %; c is in the range of 2 at. % to 5 at. %; and d is in the balance of 0.5% at. % to 3.5 at. %. [0022]An embodiment relates to a method, wherein the heating source is selected from a group consisting of: a laser, an electron beam, a plasma, an arc, and an infrared source. [0023]An embodiment relates to a method, wherein the amorphous feedstock is in powder, wire or foil form. [0024]An embodiment relates to a method, wherein the cooling rate is 104° C./s to 100° C./s. [0025]An embodiment relates to a method, wherein the cooling rate is 100° C./s or slower. [0026]An embodiment relates to a method, wherein the metallic alloy specimen has an amorphous phase content of between 20% to 100%. [0027]An embodiment relates to a method, wherein the metallic alloy specimen further comprises: an outermost surface that is phase transformed into a thin amorphous layer. [0028]An embodiment relates to a method, wherein the metallic alloy specimen is at least partially crystalline beneath the outermost surface. [0029]An embodiment relates to a method, wherein the metallic alloy specimen is produced by ultrasonic additive manufacturing. [0030]The method of claim 20, wherein the ultrasonic additive manufacturing further comprises: cold welding of thin foils. [0031]An embodiment relates to a method, wherein the thin foils each have a thickness of 250 micrometers or less. [0032]An embodiment relates to a method, wherein the metallic alloy specimen has an amorphous phase content of between 20% to 100%. [0033]An embodiment relates to a method for manufacturing a metallic alloy specimen, the method comprising: mixing a powder material having a composition of iron, chromium, molybdenum, carbon and boron, wherein an oxygen level of the composition is up to 0.2 at. % oxygen, with a liquid binding agent to form a mix; and depositing a layer of the mix to a selected area. [0034]An embodiment relates to a method, further comprising: applying another layer of the mix to bind to a previously deposited layer. [0035]An embodiment relates to a method, further comprising: repeating application of additional layers of the mix to complete manufacturing the metallic alloy specimen. [0036]An embodiment relates to a method, further comprising: incinerating the liquid binding agent. [0037]An embodiment relates to a method, further comprising: melting the powder material to produce a molten alloy. [0038]An embodiment relates to a method, further comprising: infiltrating the molten alloy into the metallic alloy specimen, wherein the metallic alloy specimen has a defined porosity for receiving the molten alloy. [0039]An embodiment relates to a method, wherein the metallic alloy specimen has an amorphous phase content of between 20% to 100%. [0040]An embodiment relates to a method, further comprising: cooling the metallic alloy specimen. [0041]An embodiment relates to a method, wherein the cooling occurs at a cooling rate of 104° C./s to 100° C./s. [0042]An embodiment relates to a method, wherein the cooling occurs at a cooling rate of 100° C./s or slower. [0043]An embodiment relates to a method, wherein the metallic alloy specimen is at least partially crystalline. [0044]An embodiment relates to a method, wherein an outermost surface of the metallic alloy specimen is phase transformed into a thin amorphous layer.
具体实施方式:
Definitions and General Techniques [0060]All publications, patents, and patent applications cited in this application (“Specification”) are hereby incorporated by reference in their entirety. [0061]The articles “a” and “an” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “a polymer resin” means one polymer resin or more than one polymer resin. Any ranges cited herein are inclusive. The terms “substantially” and “about” used throughout this Specification are used to describe and account for small fluctuations. For example, they can refer to less than or equal to ±5%, such as less than or equal to ±2%, such as less than or equal to ±1%, such as less than or equal to ±0.5%, such as less than or equal to ±0.2%, such as less than or equal to ±0.1%, such as less than or equal to ±0.05%. [0062]Bulk-solidifying amorphous alloys, or bulk metallic glasses (“BMG”), are a recently developed class of metallic materials. These alloys may be solidified and cooled at relatively high rates, and they retain the amorphous, non-crystalline (i.e., glassy) state at room temperature. Amorphous alloys have many superior properties, e.g., physical properties, than their crystalline counterparts. However, if the cooling rate is not sufficiently high, crystals may form inside the alloy during cooling, so that the unique benefits of the amorphous state can be lost. For example, one challenge with the fabrication of bulk amorphous alloy parts is the partial crystallization of parts due to either slow cooling or impurities prevalent in the raw alloy material. As a high degree of amorphicity (and, conversely, a low degree of crystallinity) is desirable in BMG parts, there is a need to develop methods for casting BMG parts having predictable and controlled amount of amorphicity. [0063]FIG. 1 (obtained from U.S. Pat. No. 7,575,040) shows a viscosity-temperature graph of a bulk solidifying amorphous alloy, from the VIT-001 series of Zr—Ti—Ni—Cu—Be family manufactured by Liquidmetal Technology. It should be noted that there is no clear liquid/solid transformation for a bulk solidifying amorphous metal during the formation of an amorphous solid. The molten alloy becomes more and more viscous with increasing undercooling until it approaches solid form around the glass transition temperature. Accordingly, the temperature of solidification front for bulk solidifying amorphous alloys can be around glass transition temperature, where the alloy will practically act as a solid for the purposes of pulling out the quenched amorphous sheet product. [0064]FIG. 2 (obtained from U.S. Pat. No. 7,575,040) shows a time-temperature-transformation (TTT) cooling curve 200 of a bulk solidifying amorphous alloy, or TTT diagram. Bulk-solidifying amorphous metals do not experience a liquid/solid crystallization transformation upon cooling, as with conventional metals. Instead, the highly fluid, non-crystalline form of the metal found at high temperatures (near a “melting temperature” Tm) becomes more viscous as the temperature is reduced (near to the glass transition temperature Tg), eventually taking on the outward physical properties of a conventional solid. [0065]Even though there is no liquid/crystallization transformation for a bulk solidifying amorphous metal, a “melting temperature” Tm may be defined as the thermodynamic liquidus temperature of the corresponding crystalline phase. Under this regime, the viscosity of bulk-solidifying amorphous alloys at the melting temperature could lie in the range of about 0.1 poise to about 10,000 poise, and even sometimes under 0.01 poise. A lower viscosity at the “melting temperature” would provide faster and complete filling of intricate portions of the shell/mold with a bulk solidifying amorphous metal for forming the BMG parts. Furthermore, the cooling rate of the molten metal to form a BMG part has to be such that the time-temperature profile during cooling does not traverse through the nose-shaped region bounding the crystallized region in the TTT diagram of FIG. 2. In FIG. 2, Tnose is the critical crystallization temperature Tx where crystallization is most rapid and occurs in the shortest time scale. [0066]The supercooled liquid region, the temperature region between Tg and Tx is a manifestation of the extraordinary stability against crystallization of bulk solidification alloys. In this temperature region the bulk solidifying alloy can exist as a high viscous liquid. The viscosity of the bulk solidifying alloy in the supercooled liquid region can vary between 1012 Pa s at the glass transition temperature down to 105 Pa s at the crystallization temperature, the high temperature limit of the supercooled liquid region. Liquids with such viscosities can undergo substantial plastic strain under an applied pressure. The embodiments herein make use of the large plastic formability in the supercooled liquid region as a forming and separating method. [0067]One needs to clarify something about Tx. Technically, the nose-shaped curve shown in the TTT diagram describes Tx as a function of temperature and time. Thus, regardless of the trajectory that one takes while heating or cooling a metal alloy, when one hits the TTT curve, one has reached Tx. In FIG. 2, Tx is shown as a dashed line as Tx can vary from close to Tm to close to Tg. [0068]The schematic TTT diagram of FIG. 2 shows processing methods of die casting from at or above Tm to below Tg without the time-temperature trajectory (shown as (1) as an example trajectory) hitting the TTT curve. During die casting, the forming takes place substantially simultaneously with fast cooling to avoid the trajectory hitting the TTT curve. The processing methods for superplastic forming (SPF) from at or below Tg to below Tm without the time-temperature trajectory (shown as (2), (3) and (4) as example trajectories) hitting the TTT curve. In SPF, the amorphous BMG is reheated into the supercooled liquid region where the available processing window could be much larger than die casting, resulting in better controllability of the process. The SPF process does not require fast cooling to avoid crystallization during cooling. Also, as shown by example trajectories (2), (3) and (4), the SPF can be carried out with the highest temperature during SPF being above Tnose or below Tnose, up to about Tm. If one heats up a piece of amorphous alloy but manages to avoid hitting the TTT curve, you have heated “between Tg and Tm”, but one would have not reached Tx. [0069]Typical differential scanning calorimeter (DSC) heating curves of bulk-solidifying amorphous alloys taken at a heating rate of 20 C/min describe, for the most part, a particular trajectory across the TTT data where one would likely see a Tg at a certain temperature, a Tx when the DSC heating ramp crosses the TTT crystallization onset, and eventually melting peaks when the same trajectory crosses the temperature range for melting. If one heats a bulk-solidifying amorphous alloy at a rapid heating rate as shown by the ramp up portion of trajectories (2), (3) and (4) in FIG. 2, then one could avoid the TTT curve entirely, and the DSC data would show a glass transition but no Tx upon heating. Another way to think about it is trajectories (2), (3) and (4) can fall anywhere in temperature between the nose of the TTT curve (and even above it) and the Tg line, as long as it does not hit the crystallization curve. That just means that the horizontal plateau in trajectories might get much shorter as one increases the processing temperature. Phase [0070]The term “phase” herein can refer to one that can be found in a thermodynamic phase diagram. A phase is a region of space (e.g., a thermodynamic system) throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, chemical composition and lattice periodicity. A simple description of a phase is a region of material that is chemically uniform, physically distinct, and/or mechanically separable. For example, in a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air over the water is a third phase. The glass of the jar is another separate phase. A phase can refer to a solid solution, which can be a binary, tertiary, quaternary, or more, solution, or a compound, such as an intermetallic compound. As another example, an amorphous phase is distinct from a crystalline phase. Metal, Transition Metal, and Non Metal [0071]The term “metal” refers to an electropositive chemical element. The term “element” in this Specification refers generally to an element that can be found in a Periodic Table. Physically, a metal atom in the ground state contains a partially filled band with an empty state close to an occupied state. The term “transition metal” is any of the metallic elements within Groups 3 to 12 in the Periodic Table that have an incomplete inner electron shell and that serve as transitional links between the most and the least electropositive in a series of elements. Transition metals are characterized by multiple valences, colored compounds, and the ability to form stable complex ions. The term “nonmetal” refers to a chemical element that does not have the capacity to lose electrons and form a positive ion. [0072]Depending on the application, any suitable nonmetal elements, or their combinations, can be used. The alloy (or “alloy composition”) can comprise multiple nonmetal elements, such as at least two, at least three, at least four, or more, nonmetal elements. A nonmetal element can be any element that is found in Groups 13-17 in the Periodic Table. For example, a nonmetal element can be any one of F, Cl, Br, I, At, O, S, Se, Te, Po, N, P, As, Sb, C, Si, Ge, and B. Occasionally, a nonmetal element can also refer to certain metalloids (e.g., B, Si, Ge, As, Sb, Te, and Po) in Groups 13-17. In one embodiment, the nonmetal elements can include B, Si, C, P, or combinations thereof. Accordingly, for example, the alloy can comprise a boride, a carbide, or both. [0073]A transition metal element can be any of scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver, cadmium, hafnium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, mercury, rutherfordium, dubnium, seaborgium, bohrium, hassium, meitnerium, ununnilium, unununium, and ununbium. In one embodiment, a BMG containing a transition metal element can have at least one of Sc, Y, La, Ac, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, and Hg. Depending on the application, any suitable transitional metal elements, or their combinations, can be used. The alloy composition can comprise multiple transitional metal elements, such as at least two, at least three, at least four, or more, transitional metal elements. [0074]The presently described alloy or alloy “sample” or “specimen” alloy can have any shape or size. For example, the alloy can have a shape of a particulate, which can have a shape such as spherical, ellipsoid, wire-like, rod-like, sheet-like, flake-like, or an irregular shape. The particulate can have any size. For example, it can have an average diameter of between about 1 micron and about 100 microns, such as between about 5 microns and about 80 microns, such as between about 10 microns and about 60 microns, such as between about 15 microns and about 50 microns, such as between about 15 microns and about 45 microns, such as between about 20 microns and about 40 microns, such as between about 25 microns and about 35 microns. For example, in one embodiment, the average diameter of the particulate is between about 25 microns and about 44 microns. In some embodiments, smaller particulates, such as those in the nanometer range, or larger particulates, such as those bigger than 100 microns, can be used. [0075]The alloy sample or specimen can also be of a much larger dimension. For example, it can be a bulk structural component, such as an ingot, housing/casing of an electronic device or even a portion of a structural component that has dimensions in the millimeter, centimeter, or meter range. Solid Solution [0076]The term “solid solution” refers to a solid form of a solution. The term “solution” refers to a mixture of two or more substances, which may be solids, liquids, gases, or a combination of these. The mixture can be homogeneous or heterogeneous. The term “mixture” is a composition of two or more substances that are combined with each other and are generally capable of being separated. Generally, the two or more substances are not chemically combined with each other. Alloy [0077]In some embodiments, the alloy composition described herein can be fully alloyed. In one embodiment, an “alloy” refers to a homogeneous mixture or solid solution of two or more metals, the atoms of one replacing or occupying interstitial positions between the atoms of the other; for example, brass is an alloy of zinc and copper. An alloy, in contrast to a composite, can refer to a partial or complete solid solution of one or more elements in a metal matrix, such as one or more compounds in a metallic matrix. The term alloy herein can refer to both a complete solid solution alloy that can give single solid phase microstructure and a partial solution that can give two or more phases. An alloy composition described herein can refer to one comprising an alloy or one comprising an alloy-containing composite. [0078]Thus, a fully alloyed alloy can have a homogenous distribution of the constituents, be it a solid solution phase, a compound phase, or both. The term “fully alloyed” used herein can account for minor variations within the error tolerance. For example, it can refer to at least 90% alloyed, such as at least 95% alloyed, such as at least 99% alloyed, such as at least 99.5% alloyed, such as at least 99.9% alloyed. The percentage herein can refer to either volume percent or weight percentage, depending on the context. These percentages can be balanced by impurities, which can be in terms of composition or phases that are not a part of the alloy. Amorphous or Non-Crystalline Solid [0079]An “amorphous” or “non-crystalline solid” is a solid that lacks lattice periodicity, which is characteristic of a crystal. As used herein, an “amorphous solid” includes “glass” which is an amorphous solid that softens and transforms into a liquid-like state upon heating through the glass transition. Generally, amorphous materials lack the long-range order characteristic of a crystal, though they can possess some short-range order at the atomic length scale due to the nature of chemical bonding. The distinction between amorphous solids and crystalline solids can be made based on lattice periodicity as determined by structural characterization techniques such as x-ray diffraction and transmission electron microscopy. [0080]The terms “order” and “disorder” designate the presence or absence of some symmetry or correlation in a many-particle system. The terms “long-range order” and “short-range order” distinguish order in materials based on length scales. [0081]The strictest form of order in a solid is lattice periodicity: a certain pattern (the arrangement of atoms in a unit cell) is repeated again and again to form a translationally invariant tiling of space. This is the defining property of a crystal. Possible symmetries have been classified in 14 Bravais lattices and 230 space groups. [0082]Lattice periodicity implies long-range order. If only one unit cell is known, then by virtue of the translational symmetry it is possible to accurately predict all atomic positions at arbitrary distances. The converse is generally true, except, for example, in quasi-crystals that have perfectly deterministic tilings but do not possess lattice periodicity. [0083]Long-range order characterizes physical systems in which remote portions of the same sample exhibit correlated behavior. This can be expressed as a correlation function, namely the spin-spin correlation function: [0084]In the above function, s is the spin quantum number and x is the distance function within the particular system. This function is equal to unity when x=x′ and decreases as the distance |x−x′| increases. Typically, it decays exponentially to zero at large distances, and the system is considered to be disordered. If, however, the correlation function decays to a constant value at large |x−x′|, then the system can be said to possess long-range order. If it decays to zero as a power of the distance, then it can be called quasi-long-range order. Note that what constitutes a large value of |x−x′| is relative. [0085]A system can be said to present quenched disorder when some parameters defining its behavior are random variables that do not evolve with time (i.e., they are quenched or frozen)—e.g., spin glasses. It is opposite to annealed disorder, where the random variables are allowed to evolve themselves. Embodiments herein include systems comprising quenched disorder. [0086]The alloy described herein can be crystalline, partially crystalline, amorphous, or substantially amorphous. For example, the alloy sample/specimen can include at least some crystallinity, with grains/crystals having sizes in the nanometer and/or micrometer ranges. Alternatively, the alloy can be substantially amorphous, such as fully amorphous. In one embodiment, the alloy composition is at least substantially not amorphous, such as being substantially crystalline, such as being entirely crystalline. [0087]In one embodiment, the presence of a crystal or a plurality of crystals in an otherwise amorphous alloy can be construed as a “crystalline phase” therein. The degree of crystallinity (or “crystallinity” for short in some embodiments) of an alloy can refer to the amount of the crystalline phase present in the alloy. The degree can refer to, for example, a fraction of crystals present in the alloy. The fraction can refer to volume fraction or weight fraction, depending on the context. A measure of how “amorphous” an amorphous alloy is can be amorphicity. Amorphicity can be measured in terms of a degree of crystallinity. For example, in one embodiment, an alloy having a low degree of crystallinity can be said to have a high degree of amorphicity. In one embodiment, for example, an alloy having 60 vol % crystalline phase can have a 40 vol % amorphous phase. Amorphous Alloy or Amorphous Metal [0088]An “amorphous alloy” is an alloy having an amorphous content of more than 50% by volume, preferably more than 90% by volume of amorphous content, more preferably more than 95% by volume of amorphous content, and most preferably more than 99% to almost 100% by volume of amorphous content. Note that, as described above, an alloy high in amorphicity is equivalently low in degree of crystallinity. An “amorphous metal” is an amorphous metal material with a disordered atomic-scale structure. In contrast to most metals, which are crystalline and therefore have a highly ordered arrangement of atoms, amorphous alloys are non-crystalline. Materials in which such a disordered structure is produced directly from the liquid state during cooling are sometimes referred to as “glasses.” Accordingly, amorphous metals are commonly referred to as “metallic glasses” or “glassy metals.” In one embodiment, a bulk metallic glass (“BMG”) can refer to an alloy, of which the microstructure is at least partially amorphous. However, there are several ways besides extremely rapid cooling to produce amorphous metals, including physical vapor deposition, solid-state reaction, ion irradiation, melt spinning, and mechanical alloying. Amorphous alloys can be a single class of materials, regardless of how they are prepared. [0089]Amorphous metals can be produced through a variety of quick-cooling methods. For instance, amorphous metals can be produced by sputtering molten metal onto a spinning metal disk. The rapid cooling, on the order of millions of degrees a second, can be too fast for crystals to form, and the material is thus “locked in” a glassy state. Also, amorphous metals/alloys can be produced with critical cooling rates low enough to allow formation of amorphous structures in thick layers—e.g., bulk metallic glasses. [0090]The terms “bulk metallic glass” (“BMG”), bulk amorphous alloy (“BAA”), and bulk solidifying amorphous alloy are used interchangeably herein. They refer to amorphous alloys having the smallest dimension at least in the millimeter range. For example, the dimension can be at least about 0.5 mm, such as at least about 1 mm, such as at least about 2 mm, such as at least about 4 mm, such as at least about 5 mm, such as at least about 6 mm, such as at least about 8 mm, such as at least about 10 mm, such as at least about 12 mm. Depending on the geometry, the dimension can refer to the diameter, radius, thickness, width, length, etc. A BMG can also be a metallic glass having at least one dimension in the centimeter range, such as at least about 1.0 cm, such as at least about 2.0 cm, such as at least about 5.0 cm, such as at least about 10.0 cm. In some embodiments, a BMG can have at least one dimension at least in the meter range. A BMG can take any of the shapes or forms described above, as related to a metallic glass. Accordingly, a BMG described herein in some embodiments can be different from a thin film made by a conventional deposition technique in one important aspect—the former can be of a much larger dimension than the latter. [0091]Amorphous metals can be an alloy rather than a pure metal. The alloys may contain atoms of significantly different sizes, leading to low free volume (and therefore having viscosity up to orders of magnitude higher than other metals and alloys) in a molten state. The viscosity prevents the atoms from moving enough to form an ordered lattice. The material structure may result in low shrinkage during cooling and resistance to plastic deformation. The absence of grain boundaries, the weak spots of crystalline materials in some cases, may, for example, lead to better resistance to wear and corrosion. In one embodiment, amorphous metals, while technically glasses, may also be much tougher and less brittle than oxide glasses and ceramics. [0092]Thermal conductivity of amorphous materials may be lower than that of their crystalline counterparts. To achieve formation of an amorphous structure even during slower cooling, the alloy may be made of three or more components, leading to complex crystal units with higher potential energy and lower probability of formation. The formation of amorphous alloy can depend on several factors: the composition of the components of the alloy; the atomic radius of the components (preferably with a significant difference of over 12% to achieve high packing density and low free volume); and the negative heat of mixing the combination of components, inhibiting crystal nucleation and prolonging the time the molten metal stays in a supercooled state. However, as the formation of an amorphous alloy is based on many different variables, it can be difficult to make a prior determination of whether an alloy composition would form an amorphous alloy. [0093]Amorphous alloys, for example, of boron, silicon, phosphorus, and other glass formers with magnetic metals (iron, cobalt, nickel) may be magnetic, with low coercivity and high electrical resistance. The high resistance leads to low losses by eddy currents when subjected to alternating magnetic fields, a property useful, for example, as transformer magnetic cores. [0094]Amorphous alloys may have a variety of potentially useful properties. In particular, they tend to be stronger than crystalline alloys of similar chemical composition, and they can sustain larger reversible (“elastic”) deformations than crystalline alloys. Amorphous metals derive their strength directly from their non-crystalline structure, which can have none of the defects (such as dislocations) that limit the strength of crystalline alloys. For example, one modern amorphous metal, known as VITRELOY™, has a tensile strength that is almost twice that of high-grade titanium. In some embodiments, metallic glasses at room temperature are not ductile and tend to fail suddenly when loaded in tension, which limits the material applicability in reliability-critical applications, as the impending failure is not evident. Therefore, to overcome this challenge, metal matrix composite materials having a metallic glass matrix containing dendritic particles or fibers of a ductile crystalline metal can be used. Alternatively, a BMG low in element(s) that tend to cause embitterment (e.g., Ni) can be used. For example, a Ni-free BMG can be used to improve the ductility of the BMG. [0095]Another useful property of bulk amorphous alloys is that they can be true glasses; in other words, they can soften and flow upon heating. This can allow for easy processing, such as by injection molding, in much the same way as polymers. As a result, amorphous alloys can be used for making sports equipment, medical devices, electronic components and equipment, and thin films. Thin films of amorphous metals can be deposited as protective coatings via a high velocity oxygen fuel technique. [0096]A material can have an amorphous phase, a crystalline phase, or both. The amorphous and crystalline phases can have the same chemical composition and differ only in the microstructure—i.e., one amorphous and the other crystalline. Microstructure in one embodiment refers to the structure of a material as revealed by a microscope at 25× magnification or higher. Alternatively, the two phases can have different chemical compositions and microstructures. For example, a composition can be partially amorphous, substantially amorphous, or completely amorphous. [0097]As described above, the degree of amorphicity (and conversely the degree of crystallinity) can be measured by fraction of crystals present in the alloy. The degree can refer to volume fraction of weight fraction of the crystalline phase present in the alloy. A partially amorphous composition can refer to a composition of at least about 5 vol % of which is of an amorphous phase, such as at least about 10 vol %, such as at least about 20 vol %, such as at least about 40 vol %, such as at least about 60 vol %, such as at least about 80 vol %, such as at least about 90 vol %. The terms “substantially” and “about” have been defined elsewhere in this application. Accordingly, a composition that is at least substantially amorphous can refer to one of which at least about 90 vol % is amorphous, such as at least about 95 vol %, such as at least about 98 vol %, such as at least about 99 vol %, such as at least about 99.5 vol %, such as at least about 99.8 vol %, such as at least about 99.9 vol %. In one embodiment, a substantially amorphous composition can have some incidental, insignificant amount of crystalline phase present therein. [0098]In one embodiment, an amorphous alloy composition can be homogeneous with respect to the amorphous phase. A substance that is uniform in composition is homogeneous. This is in contrast to a substance that is heterogeneous. The term “composition” refers to the chemical composition and/or microstructure in the substance. A substance is homogeneous when a volume of the substance is divided in half and both halves have substantially the same composition. For example, a particulate suspension is homogeneous when a volume of the particulate suspension is divided in half and both halves have substantially the same volume of particles. However, it might be possible to see the individual particles under a microscope. Another example of a homogeneous substance is air where different ingredients therein are equally suspended, though the particles, gases and liquids in air can be analyzed separately or separated from air. [0099]A composition that is homogeneous with respect to an amorphous alloy can refer to one having an amorphous phase substantially uniformly distributed throughout its microstructure. In other words, the composition macroscopically comprises a substantially uniformly distributed amorphous alloy throughout the composition. In an alternative embodiment, the composition can be of a composite, having an amorphous phase having therein a non-amorphous phase. The non-amorphous phase can be a crystal or a plurality of crystals. The crystals can be in the form of particulates of any shape, such as spherical, ellipsoid, wire-like, rod-like, sheet-like, flake-like, or an irregular shape. In one embodiment, it can have a dendritic form. For example, an at least partially amorphous composite composition can have a crystalline phase in the shape of dendrites dispersed in an amorphous phase matrix; the dispersion can be uniform or non-uniform, and the amorphous phase and the crystalline phase can have the same or a different chemical composition. In one embodiment, they have substantially the same chemical composition. In another embodiment, the crystalline phase can be more ductile than the BMG phase. [0100]The methods described herein can be applicable to any type of amorphous alloy. Similarly, the amorphous alloy described herein as a constituent of a composition or article can be of any type. The amorphous alloy can comprise the element Zr, Hf, Ti, Cu, Ni, Pt, Pd, Fe, Mg, Au, La, Ag, Al, Mo, Nb, Be, or combinations thereof. Namely, the alloy can include any combination of these elements in its chemical formula or chemical composition. The elements can be present at different weight or volume percentages. For example, an iron “based” alloy can refer to an alloy having a non-insignificant weight percentage of iron present therein, the weight percent can be, for example, at least about 20 wt. %, such as at least about 40 wt. %, such as at least about 50 wt. %, such as at least about 60 wt. %, such as at least about 80 wt. %. Alternatively, in one embodiment, the above-described percentages can be volume percentages, instead of weight percentages. Accordingly, an amorphous alloy can be zirconium-based, titanium-based, platinum-based, palladium-based, gold-based, silver-based, copper-based, iron-based, nickel-based, aluminum-based, molybdenum-based, and the like. The alloy can also be free of any of the aforementioned elements to suit a particular purpose. For example, in some embodiments, the alloy, or the composition including the alloy, can be substantially free of nickel, aluminum, titanium, beryllium, or combinations thereof. In one embodiment, the alloy or the composite is completely free of nickel, aluminum, titanium, beryllium, or combinations thereof. [0101]For example, the amorphous alloy can have the formula (Zr, Ti)a(Ni, Cu, Fe)b(Be, Al, Si, B)c, wherein a, b, and c each represents a weight or atomic percentage. In one embodiment, a is in the range of from 30 to 75, b is in the range of from 5 to 60, and c is in the range of from 0 to 50 in atomic percentages. Alternatively, the amorphous alloy can have the formula (Zr, Ti)a(Ni, Cu)b(Be)c, wherein a, b, and c each represents a weight or atomic percentage. In one embodiment, a is in the range of from 40 to 75, b is in the range of from 5 to 50, and c is in the range of from 5 to 50 in atomic percentages. The alloy can also have the formula (Zr, Ti)a(Ni, Cu)b(Be)c, wherein a, b, and c each represents a weight or atomic percentage. In one embodiment, a is in the range of from 45 to 65, b is in the range of from 7.5 to 35, and c is in the range of from 10 to 37.5 in atomic percentages. Alternatively, the alloy can have the formula (Zr)a(Nb, Ti)b(Ni, Cu)c(Al)d, wherein a, b, c, and d each represents a weight or atomic percentage. In one embodiment, a is in the range of from 45 to 65, b is in the range of from 0 to 10, c is in the range of from 20 to 40 and d is in the range of from 7.5 to 15 in atomic percentages. One embodiment of the described alloy system is a Zr—Ti—Ni—Cu—Be based amorphous alloy under the trade name VITRELOY™, such as Vitreloy-1 and Vitreloy-101, as fabricated by Liquidmetal Technologies, CA, USA. Some examples of amorphous alloys of the different systems are provided in Table 1 and Table 2. TABLE 1Amorphous Alloy CompositionsAlloyA
返回