具体实施方式:
[0021]Repeat use of reference characters in the present specification and drawings is intended to represent the same or analogous features or elements of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
[0022]Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
[0023]As used herein, the term “article” may refer to, but need not be limited to dishes, pots, pans, silverware, and other cooking utensils and items that can be cleaned in a dishwashing appliance. The term “wash cycle” is intended to refer to one or more periods of time during which a dishwashing appliance operates while containing the articles to be washed and uses a detergent and water, preferably with agitation, to e.g., remove soil particles including food and other undesirable elements from the articles. The term “rinse cycle” is intended to refer to one or more periods of time during which the dishwashing appliance operates to remove residual soil, detergents, and other undesirable elements that were retained by the articles after completion of the wash cycle. The term “drain cycle” is intended to refer to one or more periods of time during which the dishwashing appliance operates to discharge soiled water from the dishwashing appliance. The term “wash fluid” refers to a liquid used for washing and/or rinsing the articles and is typically made up of water that may include other additives such as detergent or other treatments. Furthermore, as used herein, terms of approximation, such as “approximately,”“substantially,” or “about,” refer to being within a ten percent margin of error.
[0024]FIGS. 1 and 2 depict an exemplary domestic dishwasher or dishwashing appliance 100 that may be configured in accordance with aspects of the present disclosure. For the particular embodiment of FIGS. 1 and 2, the dishwasher 100 includes a cabinet 102 (FIG. 2) having a tub 104 therein that defines a wash chamber 106. As shown in FIG. 2, tub 104 extends between a top 107 and a bottom 108 along a vertical direction V, between a pair of side walls 110 along a lateral direction L, and between a front side 111 and a rear side 112 along a transverse direction T. Each of the vertical direction V, lateral direction L, and transverse direction T are mutually perpendicular to one another.
[0025]The tub 104 includes a front opening 114 and a door 116 hinged at its bottom for movement between a normally closed vertical position (shown in FIG. 2), wherein the wash chamber 106 is sealed shut for washing operation, and a horizontal open position for loading and unloading of articles from the dishwasher 100. According to exemplary embodiments, dishwasher 100 further includes a door closure mechanism or assembly 118 that is used to lock and unlock door 116 for accessing and sealing wash chamber 106.
[0026]As best illustrated in FIG. 2, tub side walls 110 accommodate a plurality of rack assemblies. More specifically, guide rails 120 may be mounted to side walls 110 for supporting a lower rack assembly 122, a middle rack assembly 124, and an upper rack assembly 126. As illustrated, upper rack assembly 126 is positioned at a top portion of wash chamber 106 above middle rack assembly 124, which is positioned above lower rack assembly 122 along the vertical direction V. Each rack assembly 122, 124, 126 is adapted for movement between an extended loading position (not shown) in which the rack is substantially positioned outside the wash chamber 106, and a retracted position (shown in FIGS. 1 and 2) in which the rack is located inside the wash chamber 106. This is facilitated, for example, by rollers 128 mounted onto rack assemblies 122, 124, 126, respectively. Although a guide rails 120 and rollers 128 are illustrated herein as facilitating movement of the respective rack assemblies 122, 124, 126, it should be appreciated that any suitable sliding mechanism or member may be used according to alternative embodiments.
[0027]Some or all of the rack assemblies 122, 124, 126 are fabricated into lattice structures including a plurality of wires or elongated members 130 (for clarity of illustration, not all elongated members making up rack assemblies 122, 124, 126 are shown in FIG. 2). In this regard, rack assemblies 122, 124, 126 are generally configured for supporting articles within wash chamber 106 while allowing a flow of wash fluid to reach and impinge on those articles, e.g., during a cleaning or rinsing cycle. According to another exemplary embodiment, a silverware basket (not shown) may be removably attached to a rack assembly, e.g., lower rack assembly 122, for placement of silverware, utensils, and the like, that are otherwise too small to be accommodated by rack 122.
[0028]Dishwasher 100 further includes a plurality of spray assemblies for urging a flow of water or wash fluid onto the articles placed within wash chamber 106. More specifically, as illustrated in FIG. 2, dishwasher 100 includes a lower spray arm assembly 134 disposed in a lower region 136 of wash chamber 106 and above a sump 138 so as to rotate in relatively close proximity to lower rack assembly 122. Similarly, a mid-level spray arm assembly 140 is located in an upper region of wash chamber 106 and may be located below and in close proximity to middle rack assembly 124. In this regard, mid-level spray arm assembly 140 may generally be configured for urging a flow of wash fluid up through middle rack assembly 124 and upper rack assembly 126. Additionally, an upper spray assembly 142 may be located above upper rack assembly 126 along the vertical direction V. In this manner, upper spray assembly 142 may be configured for urging and/or cascading a flow of wash fluid downward over rack assemblies 122, 124, and 126. As further illustrated in FIG. 2, upper rack assembly 126 may further define an integral spray manifold 144, which is generally configured for urging a flow of wash fluid substantially upward along the vertical direction V through upper rack assembly 126.
[0029]The various spray assemblies and manifolds described herein may be part of a fluid distribution system or fluid circulation assembly 150 for circulating water and wash fluid in the tub 104. More specifically, fluid circulation assembly 150 includes a pump 152 for circulating water and wash fluid (e.g., detergent, water, and/or rinse aid) in the tub 104. Pump 152 may be located within sump 138 or within a machinery compartment located below sump 138 of tub 104, as generally recognized in the art. Fluid circulation assembly 150 may include one or more fluid conduits or circulation piping for directing water and/or wash fluid from pump 152 to the various spray assemblies and manifolds. For example, as illustrated in FIG. 2, a primary supply conduit 154 may extend from pump 152, along rear 112 of tub 104 along the vertical direction V to supply wash fluid throughout wash chamber 106.
[0030]As illustrated, primary supply conduit 154 is used to supply wash fluid to one or more spray assemblies, e.g., to mid-level spray arm assembly 140 and upper spray assembly 142. However, it should be appreciated that according to alternative embodiments, any other suitable plumbing configuration may be used to supply wash fluid throughout the various spray manifolds and assemblies described herein. For example, according to another exemplary embodiment, primary supply conduit 154 could be used to provide wash fluid to mid-level spray arm assembly 140 and a dedicated secondary supply conduit (not shown) could be utilized to provide wash fluid to upper spray assembly 142. Other plumbing configurations may be used for providing wash fluid to the various spray devices and manifolds at any location within dishwasher appliance 100.
[0031]Each spray arm assembly 134, 140, 142, integral spray manifold 144, or other spray device may include an arrangement of discharge ports or orifices for directing wash fluid received from pump 152 onto dishes or other articles located in wash chamber 106. The arrangement of the discharge ports, also referred to as jets, apertures, or orifices, may provide a rotational force by virtue of wash fluid flowing through the discharge ports. Alternatively, spray arm assemblies 134, 140, 142 may be motor-driven, or may operate using any other suitable drive mechanism. Spray manifolds and assemblies may also be stationary. The resultant movement of the spray arm assemblies 134, 140, 142 and the spray from fixed manifolds provides coverage of dishes and other dishwasher contents with a washing spray. Other configurations of spray assemblies may be used as well. For example, dishwasher 100 may have additional spray assemblies for cleaning silverware, for scouring casserole dishes, for spraying pots and pans, for cleaning bottles, etc. One skilled in the art will appreciate that the embodiments discussed herein are used for the purpose of explanation only, and are not limitations of the present subject matter.
[0032]In operation, pump 152 draws wash fluid in from sump 138 and pumps it to a diverter assembly 156, e.g., which is positioned within sump 138 of dishwasher appliance. Diverter assembly 156 may include a diverter disk (not shown) disposed within a diverter chamber 158 for selectively distributing the wash fluid to the spray arm assemblies 134, 140, 142 and/or other spray manifolds or devices. For example, the diverter disk may have a plurality of apertures that are configured to align with one or more outlet ports (not shown) at the top of diverter chamber 158. In this manner, the diverter disk may be selectively rotated to provide wash fluid to the desired spray device.
[0033]According to an exemplary embodiment, diverter assembly 156 is configured for selectively distributing the flow of wash fluid from pump 152 to various fluid supply conduits, only some of which are illustrated in FIG. 2 for clarity. More specifically, diverter assembly 156 may include four outlet ports (not shown) for supplying wash fluid to a first conduit for rotating lower spray arm assembly 134, a second conduit for rotating mid-level spray arm assembly 140, a third conduit for spraying upper spray assembly 142, and a fourth conduit for spraying an auxiliary rack such as the silverware rack.
[0034]The dishwasher 100 is further equipped with a controller 160 to regulate operation of the dishwasher 100. The controller 160 may include one or more memory devices and one or more microprocessors, such as general or special purpose microprocessors operable to execute programming instructions or micro-control code associated with a cleaning cycle. The memory may represent random access memory such as DRAM, or read only memory such as ROM or FLASH. In one embodiment, the processor executes programming instructions stored in memory. The memory may be a separate component from the processor or may be included onboard within the processor. Alternatively, controller 160 may be constructed without using a microprocessor, e.g., using a combination of discrete analog and/or digital logic circuitry (such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, and the like) to perform control functionality instead of relying upon software.
[0035]The controller 160 may be positioned in a variety of locations throughout dishwasher 100. In the illustrated embodiment, the controller 160 may be located within a control panel area 162 of door 116 as shown in FIGS. 1 and 2. In such an embodiment, input/output (“I/O”) signals may be routed between the control system and various operational components of dishwasher 100 along wiring harnesses that may be routed through the bottom of door 116. Typically, the controller 160 includes a user interface panel/controls 164 through which a user may select various operational features and modes and monitor progress of the dishwasher 100. In one embodiment, the user interface 164 may represent a general purpose I/O (“GPIO”) device or functional block. In one embodiment, the user interface 164 may include input components, such as one or more of a variety of electrical, mechanical or electro-mechanical input devices including rotary dials, push buttons, and touch pads. The user interface 164 may include a display component, such as a digital or analog display device designed to provide operational feedback to a user. The user interface 164 may be in communication with the controller 160 via one or more signal lines or shared communication busses.
[0036]It should be appreciated that the invention is not limited to any particular style, model, or configuration of dishwasher 100. The exemplary embodiment depicted in FIGS. 1 and 2 is for illustrative purposes only. For example, different locations may be provided for user interface 164, different configurations may be provided for rack assemblies 122, 124, 126, different spray arm assemblies 134, 140, 142 and spray manifold configurations may be used, and other differences may be applied while remaining within the scope of the present subject matter.
[0037]Referring now generally to FIGS. 3 and 4, fluid circulation assembly 150 will be described according to an example embodiment of the present subject matter. Fluid circulation assembly 150 may include a drive motor 170 that may be disposed within sump 138 of tub 104 and may be configured to rotate multiple components of dishwasher 100. As best shown in FIG. 4, drive motor 170 may be, for example, a brushless DC motor having a stator 172, a rotor 174, and a drive shaft 176 attached to rotor 174. A controller or control board (not shown) may control the speed of motor 170 and rotation of drive shaft 176 by selectively applying electric current to stator 172 to cause rotor 174 and drive shaft 176 to rotate. Although drive motor 170 is illustrated herein as a brushless DC motor, it should be appreciated that any suitable motor may be used while remaining within the scope of the present subject matter. For example, according to alternative embodiments, drive motor 170 may instead be a synchronous permanent magnet motor.
[0038]According to an example embodiment, drive motor 170 may be a variable speed motor. In this regard, drive motor 170 may be operated at various speeds depending on the current operating cycle of the dishwasher. For example, according to an exemplary embodiment, drive motor 170 may be configured to operate at any speed between a minimum speed, e.g., 1500 revolutions per minute (RPM), to a maximum rated speed, e.g., 4500 RPM. In this manner, use of a variable speed drive motor 170 enables efficient operation of dishwasher 100 in any operating mode. Thus, for example, the drain cycle may require a lower rotational speed than a wash cycle and/or rinse cycle. A variable speed drive motor 170 allows impeller rotation at the desired speeds while minimizing energy usage and unnecessary noise when drive motor 170 does not need to operate at full speed.
[0039]According to an exemplary embodiment, drive motor 170 and all its components may be potted. In this manner, drive motor 170 may be shock-resistant, submersible, and generally more reliable. Notably, because drive motor 170 is mounted inside wash chamber 106 and is completely submersible, no seals are required and the likelihood of leaks is reduced. In addition, because drive motor 170 is mounted in the normally unused space between lower spray arm assembly 134 and a bottom wall of sump 138, instead of beneath the sump 138, this design is inherently more compact than conventional designs.
[0040]According to an exemplary embodiment, fluid circulation assembly 150 may be vertically mounted within sump 138 of wash chamber 106. More particularly, drive motor 170 of fluid circulation assembly 150 may be mounted such that drive shaft 176 is oriented along vertical direction V of dishwasher 100. More particularly, drive shaft 176 may define an axial direction A, a radial direction R, and a circumferential direction C (FIG. 3), with the axial direction A being parallel to the vertical direction V of the dishwasher 100. As illustrated in FIG. 4, drive shaft 176 is rotatably supported by upper and lower bearings and extends out of a bottom of drive motor 170 toward a bottom of sump 138.
[0041]Referring now to FIG. 4, drive shaft 176 is configured for driving a circulation or wash pump assembly 180. Wash pump assembly 180 may generally be configured for circulating wash fluid within wash chamber 106 during wash and/or rinse cycles. More specifically, wash pump assembly 180 may include a wash pump impeller 182 disposed on drive shaft 176 within a pump housing 184. Pump housing 184 defines a pump intake 186 for drawing wash fluid into wash pump impeller 182. According to the illustrated embodiment, pump intake 186 is facing downward along the vertical direction V and is located very near the bottom of sump 138. In this manner, the amount of water required to prime and operate wash pump assembly 180 is minimized. This is particularly advantageous when running low water cycles for the purpose of water and energy savings.
[0042]Referring still to FIG. 4, pump housing 184 is in fluid communication with a supply conduit 188 through which pressurized wash fluid may be recirculated through fluid circulation assembly 150. More specifically, according to the illustrated embodiment, wash pump impeller 182 draws wash fluid in from sump 138 and pumps it through supply conduit 188 to a diverter assembly 190 (such as diverter assembly 156) which generally distributes the flow of wash fluid as desired within dishwasher 100.
[0043]As shown, diverter assembly 190 may include a diverter disc 192 disposed within a diverter chamber 194 (such as diverter chamber 158). Diverter chamber 194 is fluidly coupled to supply conduit 188, such that rotating diverter disc 192 may selectively distribute the flow of wash fluid to the spray arm assemblies 134, 140, 142, or any other fluid conduit coupled to diverter chamber 194. More particularly, diverter disc 192 may be rotatably mounted about the vertical direction V. Diverter disc 192 may have a plurality of apertures that are configured to align with a one or more outlet ports at the top of diverter chamber 194. In this manner, diverter disc 192 may be selectively rotated to provide wash fluid to spray arm assemblies 134, 140, 142 or other spray assemblies.
[0044]As illustrated in FIG. 3, fluid circulation assembly 150 further includes a filter screen or filter 196. In general, filter 196 may define an unfiltered region 197 and a filtered region 198 within sump 138. During a wash or rinse cycle, wash fluid sprayed on dishes or other articles within wash chamber 106 falls into the unfiltered region 197. Wash fluid passes through filter 196 which removes food particles, resulting in relatively clean wash fluid within the filtered region 198. As used herein, “food particles” refers to food soil, particles, sediment, or other contaminants in the wash fluid which are not intended to travel through filter 196. Thus, a food particle seal may allow water or other wash fluids to pass from the unfiltered region 197 to the filtered region 198 while preventing food particles entrained within that wash fluid from passing along with the wash fluid.
[0045]As illustrated, filter 196 is a cylindrical and conical fine mesh filter constructed from a perforated stainless steel plate. Filter 196 may include a plurality of perforated holes, e.g., approximately 15/1000 of an inch in diameter, such that wash fluid may pass through filter 196, but food particles entrained in the wash fluid do not pass through filter 196. However, according to alternative embodiments, filter 196 may be any structure suitable for filtering food particles from wash fluid passing through filter 196. For example, filter 196 may be constructed from any suitably rigid material, may be formed into any suitable shape, and may include apertures of any suitable size for capturing particulates.
[0046]According to the illustrated exemplary embodiment, filter 196 defines an aperture through which drive shaft 176 extends. Wash pump impeller 182 is coupled to drive shaft 176 above filter 196 and a drain pump assembly (e.g., as described below) is coupled to drive shaft 176 below filter 196 along the vertical direction V. Fluid circulation assembly 150 may further include an inlet guide assembly 199 which is configured for accurately locating and securing filter 196 while allowing drive shaft 176 to pass through aperture and minimizing leaks between the filtered and unfiltered regions 197, 198 of sump 138. More specifically, as best illustrated in FIG. 4, drive shaft 176 passes through a clearance bore in inlet guide assembly 199 and through filter 196 between unfiltered region 197 and filtered region 198 of sump 138. Because the clearance bore has a diameter that is larger than the diameter of drive shaft 176, inlet guide assembly 199 may further include a washer disposed within a chamber, e.g., in order to accommodate minor drive shaft wobble or misalignment while retaining a particle tight seal.
[0047]Referring again to FIG. 4, a drain pump assembly 200 according to an exemplary embodiment of the present subject matter will be described. Drain pump assembly 200 may generally be configured for periodically discharging soiled wash fluid from dishwasher 100. Drain pump assembly 200 may include a drain pump impeller 202 coupled to a bottom portion of drive shaft 176 and positioned within a drain volute 204 below filter 196. As best shown in FIG. 4, drain pump assembly 200 further includes a discharge conduit 206 that extends from and is in fluid communication with drain volute 204. As illustrated drive shaft 176 passes into drain volute 204 where it is coupled to drain pump impeller 202. During a drain cycle, drain pump impeller 202 draws soiled wash fluid into drain volute 204 and discharges it through discharge conduit 206.
[0048]Notably, drain pump impeller 202 is coupled to the bottom portion of drive shaft 176 using a one-way clutch 208. In this regard, during a wash/rinse cycle, drive motor 170 rotates in one direction, pumping filtered wash fluid using wash pump impeller 182. However, one-way clutch 208 is disengaged, so drain pump impeller 202 does not rotate at the same speed. Instead, drain pump impeller 202 may rotate at a decreased speed, e.g., due to some friction between one-way clutch 208 and drive shaft 176. According to alternative embodiments, drain pump impeller 202 may remain stationary during the wash cycle or may rotate at the same speed as wash pump impeller 182. In both cases, soil and food particles will have a tendency to collect within drain volute 204, as described herein. By contrast, during a drain cycle, drive motor 170 rotates in the opposite direction, thereby engaging one-way clutch 208 and causing drain pump impeller 202 to rotate and discharge wash fluid.
[0049]Referring now specifically to FIGS. 5 through 8, wash pump impeller 182 will be described according to an exemplary embodiment of the present subject matter. In general, wash pump impeller 182 and includes a hub 220 and a plurality of vanes 222 extending therefrom. More specifically, as explained in detail herein, hub 220 and vanes 222 of wash pump impeller 182 may be integrally formed as a single, monolithic component. In this regard, for example, wash pump impeller 182 may be formed from a single continuous piece of plastic, but may have geometries and vane designs that cannot be manufactured using conventional injection molding or machining processes.
[0050]As shown, 220 may generally define an axial direction A, a radial direction R, and a circumferential direction C that correspond to the same directions defined by drive shaft 176 when installed in wash pump assembly 180. Wash pump impeller 182, or more specifically hub 220, may define a receiving boss 224 that is configured for receiving drive shaft 176. In this regard, receiving boss 224 may be integrally formed with hub 220 and vanes 222. Moreover, receiving boss 224 may define a keyed or complementary profile for engaging drive shaft 176 to rotatably fix hub 220 to drive shaft 176. In addition, receiving boss 224 may define one or more apertures (not shown) for receiving a cotter pin, a set screw, or another suitable securing means for coupling wash pump impeller 182 to drive shaft 176.
[0051]According to the illustrated embodiment, hub 220 defines a flow surface 226 that is positioned on opposite receiving boss 224. Vanes 222 extend from flow surface 226 into sump 138, such that they are exposed to wash fluid therein. In this manner, when drive motor 170 rotates drive shaft 176, wash pump impeller 182 is configured for urging a flow of wash fluid into wash chamber 106 for cleaning articles positioned therein. As best shown in FIG. 8, flow surface 226 may generally define any suitable profile for improving the flow of wash fluid through wash pump assembly 180. In this regard, for example, flow surface 226 may have a generally conical shape or parabolic profile that extends into sump 138 and is designed (e.g., using a computational fluid dynamics model) for improved pumping performance. More specifically, according to the illustrated embodiment, flow surface 226 defines at least one convex portion 228 (e.g. proximate a center of hub 220), at least one concave portion 230, and at least one straight portion 232.
[0052]In addition, according to exemplary embodiments of the present subject matter, hub 220 may have any suitable size for urging a flow of wash fluid within dishwasher appliance 100. For example, hub 220 may define a hub diameter 234 which is measured in a radial plane defined by the radial direction R (e.g., a plane defined perpendicular to the axial direction A). In addition, hub 220 may define a hub height 236 defined along the axial direction A. According to exemplary embodiments, the hub diameter 234 is less than 10 inches, less than 5 inches, or even smaller. In addition, hub height 236 may be approximately half of hub diameter 234, e.g. such as between 1 and 3 inches. It should be appreciated that these values are only exemplary and are not intended to limit the scope of the present subject matter. Thus, the contour of hub 220 shown herein could instead have any other suitable shape according to alternative embodiments.
[0053]Referring again generally to FIGS. 5 through 8, wash pump impeller 182 may include seven vanes 222 that extend from hub 220. Although the exemplary embodiment described herein has seven vanes 222, it should be appreciated that wash pump impeller 182 may include any other suitable number of vanes 222 according to alternative embodiments. In addition, it should be appreciated that vanes 222 are integrally formed with hub 220. Although exemplary vane geometries are described below according to an exemplary embodiment, it should be appreciated that aspects of the present subject matter may be used to form wash pump impellers having any suitable vane geometries.
[0054]As best shown in FIG. 8, each vane 222 extends from hub 220 at an extension angle 240 relative to flow surface 226 of hub 220. In this regard, for example, each vane 222 may define a leading edge 242 (e.g., proximate a center of hub 220) and a trailing edge 244 (e.g., proximate an outer rim of hub 220). The extension angle 240 may vary along a length of each vane 222 between leading edge 242 and trailing edge 244. Specifically, as illustrated, the extension angle 240 is smaller proximate leading edge 242 and becomes larger proximate trailing edge 244. According to an exemplary embodiment, the extension angle 240 may be less than 60 degrees, less than 50 degrees, less than 45 degrees, or even smaller. Indeed, according to one exemplary embodiment, extension angle 240 may be so small at leading edge 242 and the slope of hub 220 may be such that vane 222 extends substantially along the radial direction R.
[0055]Notably, in addition to extending at angles other than 90 degrees from hub 220, vanes 222 may generally be curved within three dimensions. More specifically, vanes may be curved within a radial plane defined perpendicular to the axial direction A, e.g., similar to conventional two-dimensional radial impellers. However, vanes 222 may also sweep backwards over and adjacent vane 222 for improved flow characteristics. Notably, as explained briefly above, vanes 222 may typically not be formed using conventional manufacturing techniques such as injection molding and machining because sliding elements of an injection molding machine must be removed or a machining tool must be able to access the back side of each vane 222, which is typically not possible for the vane geometries described herein.
[0056]Referring now specifically to FIG. 9, a schematic view of the projections made by hub 220 and vanes 222 in a radial plane defined perpendicular to the axial direction A will be described according to an exemplary embodiment. In this regard, hub 220 may define a hub projection area 250 within the radial plane. Specifically, hub projection area 250 is equivalent to half of hub diameter 234 squared times Pi according to an exemplary embodiment. Vanes 222 also define a vane projection area 252 within the radial plane. Notably, due to the large sweeping design of vanes 222, vane projection area 252 may cover greater than 30%, greater than 50%, or greater than 70% of hub projection area 250. Notably, manufacturing such vanes 222 integrally with hub 220 is difficult or impossible using conventional techniques, particularly given the shape/sweep of vanes 222 and the very small size of hub 220.
[0057]In general, the exemplary embodiments of wash pump impeller 182 described herein may be manufactured or formed using any suitable process. However, in accordance with several aspects of the present subject matter, wash pump impeller 182 may be formed using an additive manufacturing process, such as a 3-D printing process. The use of such a process may allow wash pump impeller 182 to be formed integrally, as a single monolithic component, or as any suitable number of sub-components. In particular, the manufacturing process may allow wash pump impeller 182 to be integrally formed and include a variety of features and geometries not possible when using prior manufacturing methods. Some of these novel features are described herein.
[0058]As used herein, the terms “additively manufactured” or “additive manufacturing techniques or processes” refer generally to manufacturing processes wherein successive layers of material(s) are provided on each other to “build-up,” layer-by-layer, a three-dimensional component. The successive layers generally fuse together to form a monolithic component which may have a variety of integral sub-components. Although additive manufacturing technology is described herein as enabling fabrication of complex objects by building objects point-by-point, layer-by-layer, typically in a vertical direction, other methods of fabrication are possible and within the scope of the present subject matter. For example, although the discussion herein refers to the addition of material to form successive layers, one skilled in the art will appreciate that the methods and structures disclosed herein may be practiced with any additive manufacturing technique or manufacturing technology. For example, embodiments of the present invention may use layer-additive processes, layer-subtractive processes, or hybrid processes.
[0059]Suitable additive manufacturing techniques in accordance with the present disclosure include, for example, Fused Deposition Modeling (FDM), Selective Laser Sintering (SLS), 3D printing such as by inkjets and laserjets, Sterolithography (SLA),
[0060]Direct Selective Laser Sintering (DSLS), Electron Beam Sintering (EBS), Electron Beam Melting (EBM), Laser Engineered Net Shaping (LENS), Laser Net Shape Manufacturing (LNSM), Direct Metal Deposition (DMD), Digital Li