权利要求:
1. A household appliance comprising:
a front panel forming an exterior of the household appliance and formed of a metal material;
a display window area which includes a plurality of through holes to display information;
a display assembly provided at a rear of the front panel corresponding to the display window area and includes a plurality of light emitting diodes (LEDs) which emit light toward the plurality of through holes; and
a coating layer to fill the plurality of through holes, the coating layer having an anti-foaming agent and provided on a rear surface the front panel corresponding to the display window area.
2. The household appliance of claim 1, wherein the display window area includes eighty eight segments form formed by a group of the plurality of through holes.
3. The household appliance of claim 1, wherein the display window area includes at least one of a text, a drawing, or a symbol formed by a group of the plurality of through holes.
4. The household appliance of claim 1, wherein a part of a coating liquid forming the coating layer fills the plurality of through holes to fill the plurality of through holes.
5. The household appliance of claim 1, wherein the anti-foaming agent is included in an entire coating liquid forming the hole filling coating layer at 0.5 to 1.5 wt %.
6. The household appliance of claim 1, wherein a thickness of the hole filling coating layer is in a range of 35 to 55 μm.
7. The household appliance of claim 1, further comprising an anti-fingerprint coating layer provided onto a front surface of the front panel.
8. The household appliance of claim 1, wherein the coating layer has a prescribed transparency such that a brightness of light transmitted through the plurality of through holes is at least 40 nit.
9. The household appliance of claim 1, further comprising a first black layer printed on a surface of the coating layer except the plurality of through holes.
10. The household appliance of claim 9, further comprising a display cover pressed against the printing layer.
11. The household appliance of claim 10, wherein the display cover includes:
a through hole formed at a position corresponding to the plurality of through holes, through which light emitted toward the plurality of through holes passes; and
a second black layer which is printed on a front surface of the display cover.
12. The household appliance of claim 10, further comprising:
a touch sensor assembly mounted on the display cover; and
a display frame which slides and is inserted into a rear surface of the display cover in a state in which the display assembly is mounted.
13. The household appliance of claim 1, a diameter of a front end of each of the plurality of first through holes is less than a diameter of a rear end thereof.
14. A household appliance comprising:
a metallic front panel forming an exterior of the household appliance;
a display window area having a plurality of through holes formed on the front panel to display information through the plurality of through holes;
a display assembly provided at a rear of the front panel corresponding to the display window area and includes a plurality of LEDs which emit light toward the plurality of through holes; and
a coating layer which is screen printed on a rear surface of the front panel corresponding to the display window area and includes an anti-foaming agent, an acryl polyol, and a curing agent.
15. The household appliance of claim 14, wherein:
the anti-foaming agent is included in a coating liquid forming the coating layer at 0.5 to 1.5 wt %;
the acryl polyol is included in the coating liquid at 33 wt %; and
the curing agent is included in the coating liquid at 1 wt %.
16. The household appliance of claim 15, wherein coating layer further includes a silicon acryl polyol included in the coating liquid at 33 wt %.
17. The household appliance of claim 16, wherein coating layer further includes a leveling agent and an attachment enhancement agent.
18. The household appliance of claim 14, wherein the display window area includes a window having eighty eight segments form formed by a group of the plurality of through holes.
19. The household appliance of claim 14, wherein the display window area includes an area to display one of a text, a drawing, or a symbol formed by a group of the plurality of through holes.
20. The household appliance of claim 14, wherein a thickness of the coating layer is in a range of 35 to 55 μm.
21. The household appliance of claim 14, further comprising an anti-fingerprint coating layer attached onto a front surface of the front panel.
22. The household appliance of claim 14, wherein the coating layer has prescribed transparency such that light transmitted through the plurality of through holes has a brightness of at least equal to 40 nit.
23. The household appliance of claim 14, further comprising a first black coating layer provided over the coating layer except the plurality of through holes.
24. The household appliance of claim 23, further comprising a display cover in contact against the first black coating layer.
25. The household appliance of claim 24, wherein the display cover includes:
a through hole formed at a position corresponding to the plurality of through holes, through which light emitted toward the plurality of through holes passes; and
a second black coating layer which is printed on a front surface of the display cover,
wherein the display assembly is positioned at a through hole of the display cover.
26. A method of manufacturing a household appliance, comprising:
forming on an exterior panel of a household appliance a plurality of through holes to form a display window area;
screen printing an urethane coating liquid which includes an anti-foaming agent on a rear surface of the exterior panel to form a coating layer filling the plurality of through holes;
contouring the exterior panel to a prescribed shape base on a shape of the household appliance; and
mounting a display cover on the rear surface of the contoured exterior panel at a location corresponding to the display window area.
27. The method of claim 26, further comprising forming a first black colored layer on a surface of the coating layer except the plurality of through holes.
28. The method of claim 27, further comprising forming a second black colored layer on a front surface of the display cover, wherein when the display cover is mounted on a rear surface of the front panel, the second black colored layer is in contact with the first black colored layer.
29. The method of claim 28, further comprising:
mounting a display assembly on a display frame; and
coupling the display frame to a rear surface of the display cover.
30. The method of claim 26, wherein the display window area includes at least one of a text, a drawing, or a symbol formed by a group of the plurality of through holes.
31. The method of claim 26, wherein the anti-foaming agent is included in the urethane coating liquid at 0.5 to 1.5 wt %.
具体实施方式:
[0054]Embodiments of the present disclosure may be described with a structure, as an example, in which minute or fine holes are formed in an exterior member included in a refrigerator door, a display assembly is mounted on a rear surface of the exterior member, and light emitted from the display assembly passes through the through holes. As can be appreciated by one of ordinary skill in the art, the teachings of the present disclosure may be applied to other household appliances including refrigerators.
[0055]FIG. 1 is a front view illustrating a refrigerator according to an embodiment of the present disclosure. A refrigerator 1 may include cabinets forming storage spaces, and doors 10 which are installed at the cabinets, and open or close the storage space. The storage spaces may be partitioned horizontally and/or vertically, and a plurality of doors 10 which respectively open or close the storage spaces may be provided at opened front sides of the storage spaces. The doors 10 are configured to open or close the storage spaces using a sliding or pivoting method, and are configured to form a front side exterior of the refrigerator 1 in a state in which the doors are closed.
[0056]A display window 11 (or display area) and a touch operation unit or touch input area 12 may be provided on any one door 10 of the plurality of doors 10. The display window 11 and the touch operation unit 12 may be provided at a height easy to operate and recognize content or information shown in the display window 11.
[0057]The display window 11 is a means to show operation states of the refrigerator 1 to the outside, displays symbols or numerals when light emitted from an inside of the door 10 transmits toward an outside of the door 10, and enables a user to confirm such information from the outside.
[0058]The touch operation unit or touch input area 12 may allow a user to perform a touch operation to set an operating condition of the refrigerator 1, and may be provided on a partial region of the front surface of the door 10. In addition, a portion or a region in which a user's push operation is sensed or allow an indication for a user to provide touch input may be formed using a surface processing including a printing or an etching.
[0059]Referring to FIGS. 2 to 4, the door 10 may include a front panel 20 which defines a front side exterior of the door 10, deco members 40 and 43 (or door trim) provided at upper and lower ends of the front panel 20, and a door liner 30 which defines a rear side exterior of the door 10. The front panel 20 forms the front side exterior of the door 10, and may be formed of a stainless steel having a plate shape. The front panel 20 may also be formed of a different metal, or a material having the same look and feel a metal, or may be formed of glass or plastic as necessary. An anti-fingerprint processing or hairline processing may be further performed at a front surface of the front panel 20.
[0060]The display window 11 may be defined by a plurality of first through holes 21 disposed at a partial region of the front panel 20. The display window 11 may be defined as a set of the plurality of first through holes 21 perforated at compact intervals to display numerals or symbols. For example, the set of the plurality of first through holes 21 may be disposed in seven segments (or eighty eight segments) shape, and may also be formed in a specific symbol, image, pattern, or character shape which may show an operating condition or operation state of the refrigerator 1.
[0061]The display window 11 is formed at a position corresponding to second through holes 220 and third through holes 321 (see FIG. 9) which will be described below, and is formed so that light emitted from a light-emitting diode (LED) 313 (see FIG. 17) of a display assembly 300 exits to the outside of the door 10. The first through hole 21 may be formed to have a minute size using a laser processing or an etching, and may be formed to have a size which may not be recognized or visibly perceived from the outside when the LEDs 313 do not emit light. Each of the minute holes may have a size of 0.2 mm-0.5 mm, and each segment may include 24-36 number of minute holes. As can be appreciated, the number of holes in a segment may vary based on the size of the segment desired.
[0062]Transparent sealing members 22 may be filled inside the first through holes 21. The sealing members 22 prevent the first through holes 21 from being blocked by foreign materials. The sealing members 22 may be formed of a silicone or an epoxy material to fill the first through holes 21, and may be formed of a transparent material so that light passes therethrough. In addition, since the inside of the first through holes 21 is filled with the sealing members 22, there is also an effect that a processed surface of the first through holes 21 is prevented from being corroded. In certain instances, the sealing members may also assist in appropriate diffusion of the light.
[0063]The sealing members 22 are filled inside the first through holes 21 through an additional hole filling coating process. For example, the hole filling coating process of filling the first through hole 21 is performed on a rear surface of the front panel 20 corresponding to the display window 11, and as a result, a hole filling coating layer 22 is formed in the first through hole 21 and a peripheral region thereof. Alternatively, a transparent sheet may be attached to the front surface the front panel 20, and thus the first through holes may be blocked from introduction of foreign materials. For example, an anti-fingerprint coating solution and/or a diffusive sheet provided at the front surface of the front panel 20 may serve as the sealing members 22.
[0064]The touch operation unit 12 (touch input area) is a portion or a region marked so that a user touches with fingers, and a touch sensor assembly 500 senses touch input on the touch operation unit 12 by a user. The touch operation unit 12 may be marked or formed at the front surface of the front panel 20 using a surface processing such as an etching, a printing, or other surface processing. In addition, the touch operation unit 12 may be formed in a non-protrusive shape when seen from the outside.
[0065]Referring to FIGS. 4 to 6, the hole filling coating layer 22 may be formed using a screen printing, and may be formed in a thickness of about 35 to 55 μm. When the thickness of the hole filling coating layer 22 is out of the above range and too thin, there may be a problem in that the diffusivity or diffusion of transmitting light is decreased.
[0066]After the hole filling coating layer 22 is formed, a process of bending both side edges of the front panel is performed. To this end, a front surface and a rear surface the front panel is pressed by a fixing member such a jig. During this process, there may be an instance where the thickness of the hole filling coating layer 22 is outside of the above range (e.g., too thick) since the front panel 20 is bent along an outer line of the hole filling coating layer 22. Further, there may be a problem in that a shape of the hole filling coating layer 22 is exposed. In a process of foaming an insulation material inside a door, the front panel 20 may also be bent along the outline of the hole filling coating layer 22 by a foaming pressure.
[0067]The hole filling coating layer 22 may be formed of a urethane, including an anti-foaming agent, as a main constituent. For example, when the weight of an entire coating liquid is assumed to be 100%, the composition of the hole filling coating layer 22 may include a silicon acryl polyol at 33 wt %, an acryl polyol at 33 wt %, a mixture of an epoxy and a melamine at 15 wt %, a dry silica at 1 to 2 wt %, an anti-foaming agent at 0.5 to 1.5 wt %, and a curing agent at 1 wt %. The remaining constituent may include a leveling agent and an attachment enhancing agent.
[0068]Even though a partial composition rate of the constituents which constitute the hole filling coating layer 22 may be changed, the anti-foaming agent is maintained in a range of 0.5 to 1.5 wt %. The anti-foaming agent allows removal of bubbles generated during manufacturing of a coating liquid, and the transparency of the hole filling coating layer 22 may change according to constituents of the anti-foaming agent.
[0069]When the anti-foaming agent is added at less than 0.5 wt %, the anti-foaming agent content is too low to perform a function of an anti-foaming agent. On the other hand, when the anti-foaming agent is added at greater than 1.5 wt %, the transparency of the hole filling coating layer 22 is decreased, and the brightness of light transmission is decreased.
[0070]It may be desired to add the anti-foaming agent at 0.5 to 1.5 wt % when light of a LED 313 is transmitted through the hole filling coating layer 22 formed in the above-described composition rate. Even though an additional diffusive or diffusion sheet is not provided at the display window 12, brightness of 40 nit or more may be implemented.
[0071]Since the front panel 20 is formed of a metal material such as a stainless steel, fingerprints may be transferred on the front panel 20 or contaminants may be easily attached thereonto. To possibly prevent such problems, after the hole filling coating layer 22 is formed or before the hole filling coating layer 22 is formed, an anti-fingerprint coating layer 26 may be formed on a front surface of the front panel 20. The anti-fingerprint coating layer 26 may be generally formed by coating a resin film on a metal surface.
[0072]After the hole filling coating layer 22 is formed, a first printing layer 27 may be printed on a bottom surface of the hole filling coating layer 22. The first printing layer 27 may be printed in a black color, and light emitted from the LED 313 is prevented from being leaked between the hole filling coating layer 22 and a display cover 200 which will be described below. The first printing layer 27 is printed on the hole filling coating layer 22 except the plurality of through holes 21. Accordingly, even though the display window 12 includes a group of the plurality of first through holes 21, display information may be clearly displayed without light blurring phenomena.
[0073]Referring to FIGS. 7 and 8, the door liner 30 is coupled to the front panel 20, and faces an inside of the storage space when the door 10 is closed. The door liner 30 may be injection molded from a plastic material, and a gasket may be disposed therealong or an installation structure for coupling of a basket or the like may be provided. In addition, when the door liner 30 and the front panel 20 are coupled, a space between the door liner 30 and the front panel 20 may be formed, and may be filled with a foam solution to form a heat insulating material 24.
[0074]A frame 100 may be attached to a rear surface of the front panel 20. The frame 100 is provided to form a separate space (interior space) inside the door 10 in which a foam solution is not filled. The separated or interior space formed by the frame 100 accommodates a display cover 200, the display assembly 300, the touch sensor assembly 500, a display frame 400, and the like.
[0075]The deco members 40 and 43 provide a trim to define an upper side and a lower side of the door 10, and cover openings formed between an upper end and a lower end of the front panel 20 and an upper end and an lower end of the door liner 30, respectively. A hinge hole through which a hinge, which is a pivot of the door 10 passes, may be formed at an edge of a side of the deco member 40. Wires introduced inside the frame 100 through the hinge hole may extend, power may be supplied to electric components inside the frame 100, and operation signals may be transmitted and received.
[0076]An insertion hole 41 is formed at a deco member 40 of the deco members 40 and 43 which is coupled to the upper end of the door 10, and the insertion hole 41 is covered by a insertion hole cover 42. The insertion hole 41 aligns with the separated or interior space defined by the front panel 20 and the frame 100. When the door 10 is assembled, the display assembly 300 coupled to the display frame 400 may be inserted into the frame 100 through the insertion hole 41. The insertion hole 41 may be formed to have a size to allow the display frame 400 to be inserted thereinto, and may be positioned right above the display cover 200.
[0077]A door handle 44 may be provided at the deco member 43 coupled at the lower end of the door 10. The door handle 44 may be formed by a part of the deco member 43 being recessed in a pocket shape, and a user may grip the recessed door handle 44 and pivot the door 10. A lever 45 may be further provided at the deco member 43 of the lower end of the door 10 to perform open/close operations of the door 10. Specifically, as a latch assembly 31 is driven by operating the lever 45, the door 10 may maintain an opened or a closed state.
[0078]The display cover 200 is adhered at the rear surface of the front panel 20. The display cover 200 is configured to guide installation of the display assembly 300 having at least one LED 313 mounted thereon and may be adhered at the rear surface of the front panel 20 using an adhesive member 25, e.g., a double-sided tape or a primer.
[0079]The touch sensor assembly 500 senses a user's touch of the front panel 20 and may be installed at a side of the display cover 200. The display cover 200 may be attached to the front panel 20 in a state in which the touch sensor assembly 500 is installed at the display cover 200. When the display cover 200 is attached to the rear surface of the front panel 20, the display window 11 formed on the front panel 20 matches the second through holes 220 formed in the display cover 200. In addition, the display cover 200 is accommodated in the frame 100 in a state in which the display cover 200 is attached to the rear surface of the front panel 20.
[0080]When the display assembly 300 is installed at the display frame 400, the display assembly 300 may be inserted into an inner space of the frame 100 through the insertion hole 41. A coupled body of the display frame 400 and the display assembly 300 is inserted into an insertion space defined by the display cover 200. When the display frame 400 is completely inserted into the inside of the frame 100, the display assembly 300 is positioned in the rear of the second through holes 220 of the display cover 200. Accordingly, light emitted from the LED 313 may pass the display cover 200 and the display window 11 and may be emitted toward an outside of the door 10.
[0081]Referring to FIGS. 9 to 12, a front side and an upper side of the frame 100 are opened. When the frame 100 is attached to the rear surface of the front panel 20, an opening 110 is formed at the upper side of the frame 100. A front end of the frame 100 is bent in a direction parallel to the front panel 20, and forms a frame adhesive portion or flange 120. Specifically, the frame adhesive portion 120 adheres to the rear surface of the front panel 20, and is bent to have a predetermined width in a direction toward an outside of the frame 100. Since an upper end portion of the frame 100 is opened, the frame adhesive portion 120 may be formed in a U shape which connects a left side of a front side portion, a lower side of the front side portion, and a right side of the front side portion of the frame 100.
[0082]The adhesive member 25 formed of a double-sided tape or an adhesive may be provided at the frame adhesive portion 120, and the frame 100 may be attached to the rear surface of the front panel 20. When the frame 100 is attached to the rear surface of the front panel 20, the upper side of the frame 100 contacts a bottom surface of the deco member 40. Because the deco member 40 is provided on the upper side of the frame 100, the opening 110 of the frame 100 communicates with the insertion hole 41 formed at the deco member 40.
[0083]Even though a foam solution configured to form the heat insulating material or foam 24 is introduced inside the door 10, the foam solution is not introduced into the inner space of the frame 100. A plurality of reinforcement ribs 130 may be formed at a rear surface of the frame 100 in a grid shape or pattern. Accordingly, even though a high pressure foam solution configured to form the heat insulating material 24 is foamed inside the door 10, a shape of the frame 100 may not be deformed or broken due to the reinforcement rib 130, and the inner space of the frame 100 may be stably maintained.
[0084]In addition, a support plate 141 may be seated on an upper region of the front side portion of the frame 100. To this end, plate support portions 140 (or plate support) may be formed at a left edge and a right edge of the front side of the frame. The plate support portions 140 may be formed by parts of inner edges of the frame adhesive portion 120 being stepped at a height corresponding to a thickness of the support plate 141.
[0085]When the display cover 200 is provided inside the frame 100, the support plate 141 is provided to cover the front side portion of the frame 100 corresponding to an upper side of the display cover 200. When the support plate 141 is seated on the plate support portions 140, a front surface of the support plate 141, a front surface of the display cover 200, and the frame adhesive portion 120 are formed on the same plane. When the frame 100 is attached to the rear surface of the front panel 20, a phenomenon in which the frame 100 is shaken or is not firmly attached to the front panel 20 because of a height difference between the support plate 141 and a front side portion of the display cover 200 may be prevented. In addition, a portion of the front panel 20 in which a height difference is generated is prevented from being deformed by an impact from the outside.
[0086]The plate support portions 140 are configured to support left and right ends of the support plate 141. When the frame 100 is attached to the front panel 20, the support plate 141 may slide and be inserted into a space formed between the plate support portion 140 and the rear surface of the front panel 20. In addition, the support plate 141 may also be attached to the rear surface of the front panel 20 with the frame 100 in a state in which the support plate 141 is fixed to the plate support portion 140.
[0087]A wire inlet hole 150 may be formed at an upper portion or region of a side of the frame 100. The wire inlet hole 150 forms a path to allow passage of wires connecting electric components provided inside the frame 100 and a power components of the cabinet. As the wire inlet hole 150 is formed at an upper portion of the side thereof adjacent to a hinge of the door 10, a distance between the wire inlet hole 150 and a hinge hole of the door 10 may be minimized. Before the wires are disposed through the wire inlet hole 150 and a foam solution is foamed inside the door 10, a finishing process which covers the wire inlet hole 150 is performed, and thus a foam solution is prevented from being introduced into the frame 100.
[0088]Restraint or restriction grooves 160 may be respectively formed at left and right sides of the frame 100. The restraint grooves 160 are portions into which restraint portions or rail guide 230 which protrude in a widthwise direction of the display cover 200 from both side ends of the display cover 200 are respectively inserted. As the restraint groove 160 is formed to be recessed in a shape corresponding to that of the restraint portion 230, the display cover 200 is not shaken in a state in which the display cover 200 is accommodated in the frame 100, and maintains a correct position.
[0089]Cover support portions 170 (or cover support) support the display cover 200 and may be formed to protrude at side surfaces corresponding to lower sides of the restraint grooves 160 of inner surfaces of the frame 100. The displace cover 200 is provided in the inner space of the frame 100 below the lower sides of the restraint grooves 160. The cover support portions 170 protrude from left and right side surfaces of the frame 100 toward a center of the frame 100, and push to support both side ends at a rear surface of the display cover 200.
[0090]When the frame 100 is attached to the front panel 20 and a foam solution is foamed inside the door 10, the display cover 200 is attached to the rear surface of the front panel 20, and the cover support portions 170 push forward the display cover 200 to maintain the display cover 200 attached to the front panel 20. The adhesive member 25 adheres the display cover 200 to the rear surface of the front panel 20, but when the adhesive member hardens and loses its adhesiveness, the display cover 200 is pressed against the rear surface of the front panel 20 by a force of the cover support portions 170 pressing against the display cover 200.
[0091]A plurality of cover support portions 170 may be vertically provided at predetermined intervals, and evenly push and support the entire rear surface of the display cover 200. In addition, one or a plurality of protrusive portions 171 (or bumps) may be further formed at front surfaces of the cover support portions 170 which contact the rear surface of the display cover 200. The protrusive portion 171 may be formed in a rib shape formed in a lengthwise direction or in a protrusive shape having a hemisphere shape, and may be in line or point contact with the display cover 200. Accordingly, even though contact surfaces between the display cover 200 and the cover support portions 170 are not even, the display cover 200 may not incline. In addition, the cover support portions 170 may transmit even pressure to the display cover 200.
[0092]For example, when the display cover 200 is obliquely inclined forward or backward and is pressed against the rear surface of the front panel 20, the frame 100 may be pressed by a foam solution. While the protrusive portions 171 which press the surfaces of the display cover 200 corresponding to a side comparatively far away from the front panel 20 are worn down by pressure of the foam solution, the display cover 200 may be aligned at a right position.
[0093]The display cover 200 may be formed of a plate-shaped plastic material, and may be provided in the frame 100 where the display cover 200 is attached to the front panel 20. An accommodation portion or opening 210 at which the touch sensor assembly 500 is installed is formed at the display cover 200. After assembly, the plurality of second through holes 220 may be formed at the display cover 200 of a position/location corresponding to the display window 11.
[0094]The display assembly 300 may include a display PCB 310 on which the LED 313 is mounted, and a reflector 320 disposed at a front surface of the display PCB 310. An LED controller configured to drive the LED 313, and a sensor controller 330 configured to drive the touch sensor assembly 500 may be mounted on the display PCB 310. The sensor controller 330 processes touch signals of the front panel 20 sensed through the touch sensor assembly 500 using the display PCB 310. As illustrated in FIG. 8, a sensor PCB 700 and the display PCB 310 which constitute the touch sensor assembly 500 may be connected using a cable connector 600.
[0095]The cable connector 600 may include a first cable connector 610 connected to the sensor PCB 700, and a second cable connector 620 connected to the display PCB 310. Terminals may be formed at end portions of the first cable connector 610 and the second cable connector 620 to electrically connect them.
[0096]While the display assembly 300 is installed at the door 10, the first cable connector 610 and the second cable connector 620 may extend to have a length to connect each other at the outside of the door 10. When the display cover 200 is attached to the rear surface of the front panel 20, the first cable connector 610 may be formed at least longer than a distance from an upper end of the touch sensor assembly 500 to the insertion hole 41. When the touch sensor assembly 500 is installed at the display cover 200, the cable connectors 610 and 620 are connected at an outside of the insertion hole 41, and the display assembly 300 is inserted and installed at an inside of the insertion hole 41.
[0097]A display terminal 311 connected to the second cable connector 620 may be disposed at a left side of an upper end of the display PCB 310 (seen from FIG. 9). As the display terminal 311 is disposed at a position as far away from the touch sensor assembly 500 as possible to minimize a possibility of static electricity generated when a user's finger touches the front panel 20 is transmitted to the display PCB 310. The possibility in which the static electricity is transmitted to the display PCB 310, and components mounted on the display PCB 310 are electrically damaged is minimized.
[0098]The reflector 320 attached to the front surface of the display PCB 310 guides light emitted by the LED 313 to focus on the first through holes 21. The reflector 320 not only guides the light emitted by the LED 313 but also enables the display PCB 310 and the display terminal 311 to be spaced a distance corresponding to a thickness of the reflector 320 from the rear surface of the front panel 20, and protects the display PCB 310 from static electricity.
[0099]Because the front panel 20 is formed of a stainless steel and the display assembly 300 is provided to be adjacent to the display window 11, the front panel 20 may be vulnerable to static electricity generated when a user touches the touch operation unit 12. As the reflector 320 is provided at the front surface of the display PCB 310, the display PCB 310 is structurally spaced apart from the front panel 20. The reflector 320 simultaneously improves transmission of light and protects the display PCB 310 from static electricity.
[0100]The third through holes 321 are formed at the reflector, and location/position of the holes 321 corresponds to an arrangement of the LED 313 to allow communication with the second through holes 220 and the first through holes 21. When the display assembly 300 is installed at the display frame 400, and the display frame 400 is installed at the display cover 200, the first through holes 21, the second through holes 220, and the third through holes 321 are pressed forward or backward against each other and communicate with each other. Accordingly, light emitted by the LED 313 passes through the first to the third through holes 21, 220, and 321 and is emitted to the outside of the door 10 through the display window 11.
[0101]An audio output unit or component 340 may be provided at a rear surface of the display PCB 310. The audio output unit 340 may be configured to provide an audio output, e.g., sound, indicative of an operation state of the refrigerator 1, and may be an actuator, a speaker, a buzzer, and the like. The audio output unit 340 may be inserted into a frame hole 412 formed in the display frame 400. Accordingly, a sound output from the audio output unit 340 is transmitted to a user located in front of the door 10, and the user may recognize the operation state or a driving state of the refrigerator 1.
[0102]The display frame 400, in which the display assembly 300 including the display PCB 310 is installed, may have a plate shape so that the display PCB 310 can be seated. A space to accommodate the display PCB 310 is defined at a front side of the display frame 400 by an edge 410 which extends along an edge of the display frame 400 and protrudes forward from the display frame 400. In addition, a sliding insertion portion or rail 415 may be formed at a front end of the edge 410 at left and right edges of the display frame 400. The sliding insertion portion 415 is formed in a shape of rib bent in a direction perpendicular to the edge 410, i.e., in a widthwise direction of the display frame 400.
[0103]When the display frame 400 is coupled to the display cover 200, the sliding insertion portion 415 is inserted into an inside of a rail guide 240 formed at the display cover 200. Accordingly, the display frame 400 may be smoothly inserted into the display cover 200 by the sliding insertion portion 415.
[0104]A reinforcement rib 411 vertically and horizontally extending at predetermined intervals to form a grid may be provided at the entire front side of the display frame 400. A frame cut portion or a frame cut out 414 may be formed at an upper end of the display frame 400. As the frame cut portion 414 is cut at a position corresponding to the display terminal 311, interference between the display terminal 311 and the display frame 400 may be prevented.
[0105]In addition, bosses 413 may protrude at the front side of the display frame 400, and screws 312 are fastened into the bosses 414 to fix the display PCB 310 to the display frame 400. Due to the protrusion of the bosses 413, the display PCB 310 is spaced a prescribed distance corresponding to a protrusion height of the bosses 413 from the front side of the display frame 400.
[0106]A frame handle 420 may extend upward at a central location of the upper end of the display frame 400. The frame handle 420 allows a user to manipulate the display frame 400 for insertion into the display cover 200. The frame handle 420 includes a first vertical portion or rod/shaft 421 which extends from the display frame 400, a inclined portion or rod/shaft 422 which inclines backward from an upper end of the first vertical portion 421, and a second vertical portion or rod/shaft 423 which extends upward from an upper end the inclined portion 422.
[0107]The first vertical portion 421 and the second vertical portion 423 extend in parallel each other, and connected by the inclined portion 422. A grip portion or grip handle 424 extends in a horizontal direction at an upper end of the second vertical portion 423.
[0108]Accordingly, the user may grip the grip portion 424 to insert the display frame 400 from the lower end of the display frame 400 into an inside of the insertion hole 41 and into the display cover 200. Due to the structure of the frame handle 420, the display frame 400 may be increasingly pressed against the rear surface of the display cover 200 as the display frame 400 is increasingly inserted downward.
[0109]When the display frame 400 is completely inserted into an inside of the display cover 200, and the insertion hole cover 42 is installed at the insertion hole 41, a bottom surface of the insertion hole cover 42 may contact a top surface of the grip portion 424. In order to allow coupling between the grip portion 424 and the cover 42, a bottom surface of the insertion hole cover 42 may be contoured to have a negative relief of grip portion 424. When the insertion hole cover 42 is provided over the insertion hole 41, an upper end of the frame handle 420 may be coupled via the negative relief at the bottom surface of the cover 42 to maintain a fixed state.
[0110]Referring to FIGS. 13 to 15, the rail guide 240 is formed at left and right sides of the display cover 200. If the display cover 200 is made from a bendable material, e.g., metallic, the rail guide 240 may be formed at both ends of the display cover 200 by bending the ends a plurality of times, and the sliding insertion portion 415 is inserted into the inside of the display cover 200 along the guide rail 240.
[0111]As illustrated in FIG. 15, a forward and backward width (groove thickness) at an upper end of the rail guide 240 is greater than a forward and backward width at a lower end portion to facilitate insertion of the sliding insertion portion 415. In addition, a rear side of the rail guide 240 is inclined in a direction toward the front surface of the display cover 200 such that the groove width decreases toward a lower portion of the rail guide 240.
[0112]As the display frame 400 is increasingly inserted into the display cover 200, the display assembly 300 at a front surface of the display frame 400 is increasingly pressed against the display cover 200. When the display frame 400 is completely inserted into the display cover 200, the sliding insertion portion 415 is fixed to an inside of the rail guide 240, and the reflector 320 is completely pressed against the rear surface of the display cover 200. Further, the third through holes 321 are aligned forward and backward with the second through holes 220.
[0113]The front surface of the display cover 200 is attached or fixed to the rear surface of the front panel 20, and the accommodation portion 210 is formed at a side of th