Insulated container

公开(公告)号:
US20120318805A1
公开(公告)日:
2012-12-20
申请号:
US13/491007
申请日:
2012-06-07
授权日:
-
受理局:
美国
专利类型:
发明申请
简单法律状态:
有效
法律状态/事件:
授权 | 质押
IPC分类号:
A47G19/22 | B65D81/38 | A47G19/23
战略新兴产业分类:
-
国民经济行业分类号:
O8199 | C2039 | C3379 | C3054 | C3382 | C3074
当前申请(专利权)人:
BERRY PLASTICS CORPORATION
原始申请(专利权)人:
BERRY PLASTICS CORPORATION
当前申请(专利权)人地址:
101 OAKLEY STREET, 47710, EVANSVILLE, INDIANA
工商统一社会信用代码:
-
工商登记状态:
-
工商注册地址:
-
工商成立日期:
1967
工商企业类型:
-
发明人:
LESER, CHRIS K. | DRISKILL, PHILIIP A. | WALLACE, CHARLES T. | EULER, JOHN B. | PALADINO, JASON J. | MARAVICH, MILAN C. | DAVIS, DANIEL O. | MANN, JEFFREY A. | BOWLDS, RANDY A.
代理机构:
-
代理人:
-
摘要:
A container is formed to include an interior region and a mouth opening into the interior region. The container includes a floor and a side wall coupled to the floor to define the interior region between the floor and the side wall
技术问题语段:
-
技术功效语段:
-
权利要求:
1. An insulative cup comprising a body including a sleeve-shaped side wall and a floor coupled to the body to define an interior region bounded by the sleeve-shaped side wall and the floor, wherein the body comprises a sheet comprising insulative cellular non-aromatic polymeric material configured to provide means for enabling localized plastic deformation in at least one selected region of the body to provide a plastically deformed first material segment having a first density located in a first portion of the selected region of the body and a second material segment having a second density lower than the first density located in an adjacent second portion of the selected region of the body without fracturing the insulative cellular non-aromatic polymeric material so that a predetermined insulative characteristic is maintained in the body. 2. The insulative cup of claim 1, wherein a first of the selected regions of the body in which localized plastic deformation is enabled by the insulative cellular non-aromatic polymeric material is in the sleeve-shaped side wall and wherein the sleeve-shaped side wall includes an upright inner tab arranged to extend upwardly from the floor and configured to provide the first material segment having the first density in the first of the selected regions of the body, an upright outer tab arranged to extend upwardly from the floor and to mate with the upright inner tab along an interface therebetween, and an upright fence arranged to interconnect the upright inner and outer tabs and surround the interior region and configured to provide the second material segment having the second density in the first of the selected regions of the body and cooperate with the upright inner and outer tabs to form the sleeve-shaped side wall. 3. The insulative cup of claim 2, wherein a second of the selected regions of the body in which localized plastic deformation is enabled by the insulative cellular non-aromatic polymeric material is in a rolled brim included in the body and coupled to an upper end of the sleeve-shaped side wall to lie in spaced-apart relation to the floor and to frame an opening into the interior region and wherein the rolled brim includes an inner rolled tab configured to provide the first material segment in the second of the selected regions of the body and coupled to an upper end of the upright outer tab included in the sleeve-shaped side wall, an outer rolled tab coupled to an upper end of the upright inner tab included in the sleeve-shaped side wall and to an outwardly facing exterior surface of the inner rolled tab, and a rolled lip arranged to interconnect oppositely facing side edges of each of the inner and outer rolled tabs and configured to provide the second material segment having the second density in the second of the selected region of the body and cooperate with the inner and outer rolled tabs to form the rolled brim. 4. The insulative cup of claim 3, wherein a third of the selected regions of the body in which localized plastic deformation is enabled by the insulative cellular non-aromatic polymeric material is in a floor mount included in the body and coupled to a lower end of the sleeve-shaped side wall to lie in spaced-apart relation to the rolled brim and to the floor to support the floor in a stationary position relative to the sleeve-shaped side wall to form the interior region and wherein the floor mount includes a web-support ring coupled to the lower end of the sleeve-shaped side wall and configured to provide the second material segment having the second density in the third of the selected regions of the body, a floor-retaining flange coupled to the floor and arranged to be surrounded by the web-support ring, and a web arranged to interconnect the floor-retaining flange and the web-support ring and configured to provide the first material segment having the first density in the third of the selected regions of the body. 5. The insulative cup of claim 4, wherein a fourth of the selected regions of the body in which localized plastic deformation is enabled by the insulative cellular non-aromatic polymeric material is in the floor-retaining flange of the floor mount, the floor-retaining flange includes an alternating series of upright thick and thin staves arranged in side-to-side relation to extend upwardly from the web toward the interior region bounded by the sleeve-shaped side wall and the floor, a first of the upright thick staves is configured to include a right side edge extending upwardly from the web toward the interior region, a second of the upright thick staves is configured to include a left side edge arranged to extend upwardly from the web toward the interior region and lie in spaced-apart confronting relation to the right side edge of the first of the upright thick staves, and a first of the upright thin staves is arranged to interconnect the left side edge of the first of the upright thick staves and the right side edge of the second of the upright thick staves and to cooperate with the left and right side edges to define therebetween a vertical channel, the first of the upright thin staves is configured to provide the first material segment in the fourth of the selected regions of the body, and the first of the upright thick staves is configured to provide the second material segment in the fourth of the selected regions of the body. 6. The insulative cup of claim 5, wherein the first of the upright thin staves is located relative to the first and second of the upright thick staves to cause the vertical channel to open inwardly into a lower interior region bounded by the floor-retaining flange and a horizontal platform included in the floor and located above the floor-retaining flange. 7. The insulative cup of claim 5, wherein the first of the upright thin staves is located relative to the first and second of the upright thick staves to cause the vertical channel to open outwardly in a direction toward the web-support ring. 8. The insulative cup of claim 2, wherein the upright inner tab includes an inner surface bounding a portion of the interior region and an outer surface facing toward the upright outer tab, the upright outer tab includes an inner surface facing toward the interior region and mating with the outer surface of the upright inner tab to define the interface between the upright inner and outer tabs, and the upright outer tab further includes an outer face facing away from the upright inner tab. 9. The insulative cup of claim 8, wherein each of the inner and outer surfaces of the upright inner and outer tabs has an arcuate shape in a horizontal cross-section and subtends an acute angle of less than 20°. 10. The insulative cup of claim 2, wherein the upright fence is C-shaped in a horizontal cross-section and each of the upright inner and outer tabs has an arcuate shape in a horizontal cross-section. 11. The insulative cup of claim 2, wherein the upright fence includes an upright left side edge and an upright right side edge arranged to lie in spaced-apart confronting relation to the upright left side edge and the upright outer tab is configured to have the first density and mate with the upright inner tab to establish a bridge arranged to interconnect the upright left and right side edges of the upright fence and formed of plastically deformed material having the first density. 12. The insulative cup of claim 11, wherein the upright fence has an inner surface bounding a portion of the interior region and an outer surface facing away from the interior region and surrounding the inner surface of the upright fence and cooperating with the inner surface of the upright fence to define a first thickness therebetween, the upright inner tab includes an inner surface bounding a portion of the interior region and an outer surface facing toward the upright outer tab, the upright outer tab includes an inner surface facing toward the interior region and mating with the outer surface of the upright inner tab to define the interface between the upright inner and outer tabs, and the upright outer tab further includes an outer face facing away from the upright inner tab, the inner and outer surfaces of the upright inner tab cooperate to define a second thickness therebetween that is about half of the first thickness, and the inner and outer surfaces of the upright outer tab cooperate to define a third thickness that is about half of the first thickness. 13. The insulative cup of claim 1, wherein the body further includes a rolled brim comprising the insulative cellular non-aromatic polymeric material, the rolled brim is coupled to an upper end of the sleeve-shaped side wall to lie in spaced-apart relation to the floor and to frame an opening into the interior region, and the rolled brim includes an inner rolled tab configured to provide the plastically deformed first material segment having the first density and to include oppositely facing left and right side edges and a rolled lip arranged to interconnect the oppositely facing left and right side edges of the inner rolled tab and configured to provide the second material segment having the second density. 14. The insulative cup of claim 13, wherein the rolled brim further includes an outer rolled tab coupled to an outwardly facing surface of the inner rolled tab to provide an outer shell covering the inner rolled tab and formed of plastically deformed material having the first density. 15. The insulative cup of claim 14, wherein the outer rolled tab includes oppositely facing left and right side edges and the rolled lip is arranged to interconnect the oppositely facing left and right side edges of the outer rolled tab. 16. The insulative cup of claim 15, wherein the rolled lip is C-shaped in horizontal cross-section and each of the inner and outer rolled tabs has an arcuate shape between the oppositely facing left and right side edges thereof to provide the rolled brim with an annular shape. 17. The insulative cup of claim 13, wherein the body further includes a sleeve-shaped side wall comprising the insulative cellular non-aromatic polymeric material and the sleeve-shaped side wall includes an upright inner tab arranged to extend upwardly from the floor and configured to provide the plastically deformed first material segment having the first density, an upright outer tab arranged to extend upwardly from the floor and to mate with the upright inner tab along an interface therebetween, and an upright fence arranged to interconnect the upright inner and outer tabs and surround the interior region and configured to provide the second material segment having the second density. 18. The insulative cup of claim 13, wherein the body further includes a floor mount comprising the insulative cellular non-aromatic polymeric material and the floor mount includes a web-support ring coupled to a lower end of the sleeve-shaped side wall and configured to provide the second material segment having the second density, a floor-retaining flange coupled to the floor and arranged to be surrounded by the web-support ring, and a web arranged to interconnect the floor-retaining flange and the web-support ring and configured to provide the plastically deformed first material segment having the first density. 19. The insulative cup of claim 13, wherein the body further includes a floor-retaining flange comprising the insulative cellular non-aromatic polymeric material and wherein the floor-retaining flange is coupled to the floor and is formed to include an alternating series of upright thick and thin staves arranged in side-to-side relation to extend upwardly toward the interior region bounded by the sleeve-shaped side wall and the floor, a first of the upright thick staves is configured to include a right side edge extending upwardly toward the interior region, a second of the upright thick staves is configured to include a left side edge extending upwardly toward the interior region and lie in spaced-apart confronting relation to the right-side edge of the first of the upright thick staves, and a first of the upright thin staves is arranged to interconnect the left and right side edges to define therebetween a vertical channel, the first of the upright thin staves is configured to provide the plastically deformed first material segment, and the first of the upright thick staves is configured to provide the second material segment. 20. The insulative cup of claim 1, wherein the body further includes an annular rolled brim comprising the insulative cellular non-aromatic polymeric material, the annular rolled brim is coupled to an annular upper end of the sleeve-shaped side wall to lie in spaced-apart relation to the floor and to frame an opening into the interior region, the annular rolled brim includes a rolled tab configured to provide the plastically deformed first material segment having the first density and to include oppositely facing left and right side edges, and the annular rolled brim further includes a rolled lip coupled to the annular upper end of the sleeve-shaped side wall and arranged to interconnect the oppositely facing left and right side edges of the rolled tab and configured to provide the second material segment having the second density. 21. The insulative cup of claim 1, wherein the body further includes a floor mount comprising the insulative cellular non-aromatic polymeric material, the floor mount is coupled to a lower end of the sleeve-shaped side wall and to the floor to support the floor in a stationary position relative to the sleeve-shaped side wall to form the interior region, and the floor mount includes a floor-retaining flange coupled to the floor, a web-support ring coupled to the lower end of the sleeve-shaped side wall and arranged to surround the floor-retaining flange, and a web arranged to interconnect the floor-retaining flange and the web-support ring and configured to provide the plastically deformed first material segment having the first density, and the web-support ring is configured to provide the second material segment having the second density. 22. The insulative cup of claim 21, wherein each of the web and the web-support ring has an annular shape. 23. The insulative cup of claim 22, wherein the floor-retaining flange has an annular shape. 24. The insulative cup of claim 21, wherein each of the floor-retaining flange, the web, and the web-support ring includes an inner layer having an interior surface mating with the floor and an overlapping outer layer mating with an exterior surface of the inner layer. 25. The insulative cup of claim 21, wherein the floor includes a horizontal platform bounding a portion of the interior region and a platform-support member coupled to the horizontal platform and arranged to extend downwardly away from the interior region into a space provided between the floor-retaining flange and the web-support ring to mate with each of the floor-retaining flange and the web-support ring. 26. The insulative cup of claim 25, wherein the platform-support member has an annular shape and is arranged to surround the floor-retaining flange and lie in an annular space provided between the horizontal platform and the web. 27. The insulative cup of claim 25, wherein each of the floor-retaining flange, the web, and the web-support ring includes an inner layer having an interior surface mating with the floor and an overlapping outer layer mating with an exterior surface of the inner layer and the inner layer of each of the floor-retaining flange, the web, and the web-support ring is arranged to mate with the platform-support member. 28. The insulative cup of claim 21, wherein the body further includes a sleeve-shaped side wall comprising the insulative cellular non-aromatic polymeric material and the sleeve-shaped side wall includes an upright inner tab arranged to extend upwardly from the floor and configured to provide the plastically deformed first material segment having the first density, an upright outer tab arranged to extend upwardly from the floor and to mate with the upright inner tab along an interface therebetween, and an upright fence arranged to interconnect the upright inner and outer tabs and surround the interior region and configured to provide the second material segment having the second density. 29. The insulative cup of claim 21, wherein the body further includes a floor-retaining flange comprising the insulative cellular non-aromatic polymeric material and wherein the floor-retaining flange is coupled to the floor and is formed to include an alternating series of upright thick and thin staves arranged in side-to-side relation to extend upwardly toward the interior region bounded by the sleeve-shaped side wall and the floor, a first of the upright thick staves is configured to include a right side edge extending upwardly toward the interior region, a second of the upright thick staves is configured to include a left side edge extending upwardly toward the interior region and lie in spaced-apart confronting relation to the right-side edge of the first of the upright thick staves, and a first of the upright thin staves is arranged to interconnect the left and right side edges to define therebetween a vertical channel, the first of the upright thin staves is configured to provide the plastically deformed first material segment, and the first of the upright thick staves is configured to provide the second material segment. 30. The insulative cup of claim 1, wherein the body further includes a floor-retaining flange arranged to lie in a stationary position relative to the sleeve-shaped side wall and coupled to the floor to retain the floor in a stationary position relative to the sleeve-shaped side wall, the floor includes a horizontal platform having a perimeter edge mating with an inner surface of the sleeve-shaped side wall and an upwardly facing top side bounding a portion of the interior region, and the floor-retaining flange includes an alternating series of upright thick and thin staves arranged to lie in side-to-side relation to one another to extend upwardly toward a downwardly facing underside of the horizontal platform, a first of the upright thick staves is configured to include a right side edge extending upwardly toward the underside of the horizontal platform, a second of the upright thick staves is configured to include a left side edge arranged to extend upwardly toward the underside of the horizontal platform and lie in spaced-apart confronting relation to the right side edge of the first of the upright thick staves, and a first of the upright thin staves is arranged to interconnect the left and right side edges and cooperate with the left and right side edges to define therebetween a vertical channel, the first of the thin staves is configured to provide the first material segment having the first density, and the first of the thick staves is configured to provide the second material segment having the second density. 31. The insulative cup of claim 30, wherein the first of the upright thin staves is located relative to the first and the second of the upright thick staves to cause the vertical channel to open inwardly into a lower interior region bounded by the horizontal platform and the floor-retaining flange. 32. The insulative cup of claim 30, wherein the body further includes a web-support ring coupled to a lower end of the sleeve-shaped side wall and arranged to surround the floor-retaining flange and a web arranged to interconnect the web-support ring and the floor-retaining flange, and the first of the upright thin staves is located relative to the first and second of the upright thick staves to cause the vertical channel to open outwardly in a direction toward the web-support ring. 33. The insulative cup of claim 30, wherein the floor-retaining flange has an annular shape and is arranged to surround a vertically extending central axis intercepting a center point of the horizontal platform and the first of the thin staves has an inner wall facing toward a portion of the vertically extending central axis passing through the lower interior region. 34. The insulative cup of claim 33, wherein the floor further includes a platform-support member arranged to surround the floor-retaining flange and cooperate with the horizontal platform to form a downwardly opening floor cavity containing the alternating series of upright thick and thin staves therein. 35. The insulative cup of claim 30, wherein the body further includes a sleeve-shaped side wall comprising the insulative cellular non-aromatic polymeric material and the sleeve-shaped side wall includes an upright inner tab arranged to extend upwardly from the floor and configured to provide the plastically deformed first material segment having the first density, an upright outer tab arranged to extend upwardly from the floor and to mate with the upright inner tab along an interface therebetween, and an upright fence arranged to interconnect the upright inner and outer tabs and surround the interior region and configured to provide the second material segment having the second density. 36. The insulative cup of claim 1, wherein the first material segment in the sheet of insulative cellular non-aromatic polymeric material has a relatively thin first thickness and the second material segment in the sheet of insulative cellular non-aromatic polymeric material has a relatively thicker second thickness. 37. The insulative cup of claim 36, wherein the body further comprises cellular non-aromatic skin comprising a biaxially oriented polypropylene film adhered to the insulative cellular non-aromatic polymeric material. 38. The insulative cup of claim 1, wherein the body further comprises a graphics skin coupled to an exterior surface of a strip of the insulative cellular non-aromatic polymeric material and configured to include a film, an adhesive interposed between the film and the exterior surface, and an ink printed on the film to provide a graphics design. 39. The insulative cup of claim 38, wherein the film is biaxially oriented polypropylene. 40. The insulative cup of claim 1, wherein the insulative cellular non-aromatic polymeric material comprises a polypropylene base resin having a high melt strength, a polypropylene copolymer resin, at least one nucleation agent, and gas means for expanding the resins to reduce density. 41. The insulative cup of claim 40, wherein the gas means comprises carbon dioxide. 42. The insulative cup of claim 40, wherein the polypropylene base resin comprises broadly distributed molecular weight polypropylene characterized by a distribution that is unimodal. 43. The insulative cup of claim 40, wherein the polypropylene base resin further includes a polypropylene homopolymer resin. 44. The insulative cup of claim 1, wherein the insulative cellular non-aromatic polymeric materials comprises a polypropylene base resin having a high melt strength, a polypropylene homopolymer resin, at least one nucleation agent, and gas means for expanding the resins to reduce density. 45. The insulative cup of claim 44, wherein the gas means comprises carbon dioxide. 46. The insulative cup of claim 44, wherein the polypropylene base resin comprises a broadly distributed molecular weight polypropylene characterized by a distribution that is unimodal. 47. The insulative cup of claim 1, wherein the insulative cellular non-aromatic polymeric material comprises a broadly distributed molecular weight polypropylene characterized by a distribution that is unimodal. 48. The insulative cup of claim 1, wherein the first density is about 0.350 g/cm3 and the second density is about 0.175 g/cm3. 49. The insulative cup of claim 1, wherein the insulative cellular non-aromatic polymeric material is formed to include cells filled with gas and each cell is bounded by a cell wall provided in the insulative cellular non-aromatic polymeric material and configured to be inelastically deformable during exposure to localized plastic deformation. 50. The insulative cup of claim 1, wherein the insulative cellular non-aromatic polymeric material comprises a high melt strength polypropylene characterized by long-chain branching to provide a predetermined balance of processability and high melt elasticity. 51. An insulative cup comprising a body including a sleeve-shaped side wall and a floor coupled to the body to define an interior region bounded by the sleeve-shaped side wall and the floor, wherein the body comprises an insulative cellular polymeric material configured to provide means for enabling localized plastic deformation in at least one selected region of the body to provide a plastically deformed first material segment having a first density located in a first portion of the selected region of the body and a second material segment having a second density lower than the first cell volume located in an adjacent second portion of the selected region of the body without fracturing the insulative cellular polymeric material so that a predetermined insulative characteristic is maintained in the body, wherein one of the selected regions of the body in which localized plastic deformation is enabled by the insulative cellular polymeric material is in a floor mount included in the body and coupled to a lower end of the sleeve-shaped side wall to lie in spaced-apart relation to the rolled brim and to the floor to support the floor in a stationary position relative to the sleeve-shaped side wall to form the interior region and wherein the floor mount includes a web-support ring coupled to the lower end of the sleeve-shaped side wall and configured to provide the second material segment having the second density in the one of the selected regions of the body, a floor-retaining flange coupled to the floor and arranged to be surrounded by the web-support ring, and a web arranged to interconnect the floor-retaining flange and the web-support ring and configured to provide the first material segment having the first density in the one of the selected regions of the body. 52. The insulative cup of claim 51, wherein another of the selected regions of the body in which localized plastic deformation is enabled by the insulative cellular non-aromatic polymeric material is in the floor-retaining flange of the floor mount, the floor-retaining flange includes an alternating series of upright thick and thin staves arranged in side-to-side relation to extend upwardly from the web toward the interior region bounded by the sleeve-shaped side wall and the floor, a first of the upright thick staves is configured to include a right side edge extending upwardly from the web toward the interior region, a second of the upright thick staves is configured to include a left side edge arranged to extend upwardly from the web toward the interior region and lie in spaced-apart confronting relation to the right side edge of the first of the upright thick staves, and a first of the upright thin staves is arranged to interconnect the left side edge of the first of the upright thick staves and the right side edge of the second of the upright thick staves and to cooperate with the left and right side edges to define therebetween a vertical channel, the first of the upright thin staves is configured to provide the first material segment in another of the selected regions of the body, and the first of the upright thick staves is configured to provide the second material segment in another of the selected regions of the body. 53. The insulative cup of claim 52, wherein the first of the upright thin staves is located relative to the first and second of the upright thick staves to cause the vertical channel to open inwardly into a lower interior region bounded by the floor-retaining flange and a horizontal platform included in the floor and located above the floor-retaining flange. 54. The insulative cup of claim 52, wherein the first of the upright thin staves is located relative to the first and second of the upright thick staves to cause the vertical channel to open outwardly in a direction toward the web-support ring. 55. The insulative cup of claim 52, wherein the floor-retaining flange has an annular shape and is arranged to surround a vertically extending central axis intercepting a center point of the horizontal platform and the first of the thin staves has an inner wall facing toward a portion of the vertically extending central axis passing through the lower interior region. 56. The insulative cup of claim 55, wherein the floor further includes a platform-support member arranged to surround the floor-retaining flange and cooperate with the horizontal platform to form a downwardly opening floor cavity containing the alternating series of upright thick and thin staves therein. 57. The insulative cup of claim 51, wherein each of the web and the web-support ring has an annular shape. 58. The insulative cup of claim 57, wherein the floor-retaining flange has an annular shape. 59. The insulative cup of claim 51, wherein each of the floor-retaining flange, the web, and the web-support ring includes an inner layer having an interior surface mating with the floor and an overlapping outer layer mating with an exterior surface of the inner layer. 60. The insulative cup of claim 51, wherein the floor includes a horizontal platform bounding a portion of the interior region and a platform-support member coupled to the horizontal platform and arranged to extend downwardly away from the interior region into a space provided between the floor-retaining flange and the web-support ring to mate with each of the floor-retaining flange and the web-support ring. 61. The insulative cup of claim 60, wherein the platform-support member has an annular shape and is arranged to surround the floor-retaining flange and lie in an annular space provided between the horizontal platform and the web. 62. The insulative cup of claim 60, wherein each of the floor-retaining flange, the web, and the web-support ring includes an inner layer having an interior surface mating with the floor and an overlapping outer layer mating with an exterior surface of the inner layer and the inner layer of each of the floor-retaining flange, the web, and the web-support ring is arranged to mate with the platform-support member. 63. A vessel comprising a sleeve-shaped structure including a first end and a second end, the first end defining an opening into a storage space of the vessel, and a floor coupled to the second end of the sleeve-shaped structure such that the floor and the sleeve-shaped structure define the storage space provided to store a product, wherein the sleeve-shaped structure comprises a sheet comprising insulative cellular polymeric material providing means for insulating materials positioned in the storage space, maintaining the shape of the sleeve-shaped structure when the product is supported in the storage space, and enabling localized plastic deformation to form features in the insulative cellular polymeric material that permit gathering of the insulative cellular polymeric material as the sleeve-shaped structure is formed so that the insulative cellular polymeric material can be worked into the sleeve-shaped structure without bunching material or fracturing the sheet of insulative cellular polymeric material. 64. The vessel of claim 63, wherein the sleeve-shaped structure further comprises a skin comprising biaxially oriented polypropylene sheet adhered to the insulative cellular polymeric material. 65. The vessel of claim 64, wherein the insulative cellular polymeric material comprises high melt strength polypropylene. 66. The vessel of claim 64, wherein the sleeve-shaped structure comprises an elongated wall defining a first end and a second end, the elongated wall includes a first portion having a first generally uniform thickness and a first density, a second portion having a second generally uniform thickness greater than the first generally uniform thickness and a second density different from and less than the first density, and a third portion having a third generally uniform thickness greater than the first generally uniform thickness and a third density different from and less than the first density, and wherein the second and third portions are arranged relative to one another and interconnected by the first portion to form at least a portion of the elongated wall. 67. The vessel of claim 63, wherein the sleeve-shaped structure comprises an elongated wall defining a first end
技术领域:
-
背景技术:
[0002]The present disclosure relates to vessels, and in particular to insulated containers, such as cups, for containing hot or cold beverages or food. More particularly, the present disclosure relates to an insulated cup formed from polymeric materials.
发明内容:
[0003]A vessel in accordance with the present disclosure is configured to hold a product in an interior region. In illustrative embodiments, the vessel is an insulated container such as a drink cup, a food-storage cup, or a dessert cup. [0004]In illustrative embodiments, an insulative cup includes a body having a sleeve-shaped side wall and a floor coupled to the body to cooperate with the side wall to form an interior region for storing food, liquid, or any suitable product. The body also includes a rolled brim coupled to an upper end of the side wall and a floor mount coupled to a lower end of the side wall and to the floor. [0005]In illustrative embodiments, the body is made of a sheet comprising an insulative cellular non-aromatic polymeric material. In some embodiments of the present disclosure, the body is made of a multi-layer sheet including a substrate layer comprising the insulative cellular non-aromatic polymeric material and an outer layer comprising a skin coupled to the substrate layer and configured to display artwork and text. In other embodiments of the present disclosure, such text and artwork are printed directly on an exterior surface of the insulative cellular non-aromatic polymeric material. In illustrative embodiments, the floor also comprises insulative cellular non-aromatic polymeric material. [0006]The insulative cellular non-aromatic polymer material included in the body is configured in accordance with the present disclosure to provide means for enabling localized plastic deformation in at least one selected region of the body (e.g., the side wall, the rolled brim, the floor mount, and a floor-retaining flange included in the floor mount) to provide (1) a plastically deformed first material segment having a first density in a first portion of the selected region of the body and (2) a second material segment having a relatively lower second density in an adjacent second portion of the selected region of the body. In illustrative embodiments, the more dense first material segment is thinner than the second material segment. [0007]In illustrative embodiments, the insulative cellular non-aromatic polymeric material comprises a polypropylene base resin having a high melt strength, a polypropylene copolymer or a homopolymer resin (or both), and cell-forming agents including primary and secondary nucleating agents and a blowing agent such as carbon dioxide gas that is injected into the resins to expand the resins and reduce density. The base resin comprises broadly distributed molecular weight polypropylene characterized by a distribution that is unimodal (not bimodal). [0008]In illustrative embodiments, the skin is coupled to an exterior surface of the insulative cellular non-aromatic polymeric material. The skin includes a film, an adhesive interposed between the film and the exterior surface of the insulative cellular non-aromatic polymeric material, and an ink printed on the film to provide a graphic design including artwork, text, or both. The film is biaxially oriented polypropylene in illustrative embodiments. [0009]Additional features of the present disclosure will become apparent to those skilled in the art upon consideration of illustrative embodiments exemplifying the best mode of carrying out the disclosure as presently perceived.
具体实施方式:
[0065]Localized plastic deformation is provided in accordance with the present disclosure in, for example, four regions 101, 102, 103, and 104 of a body 11 of an insulative cup 10 comprising an insulative cellular non-aromatic polymeric material as suggested in FIGS. 1 and 3-3D. A material has been plastically deformed, for example, when it has changed shape to take on a permanent set in response to exposure to an external compression load and remains in that new shape after the load has been removed. Insulative cup 10 disclosed herein is not a paper cup but rather a cup made of a cellular non-aromatic polymeric material with insulative qualities suitable for holding hot and cold contents. [0066]A first embodiment of an insulative cup 10 having four regions 101-104 where localized plastic deformation provides segments of insulative cup 10 that exhibit higher material density than neighboring segments of insulative cup 10 in accordance with the present disclosure is shown in FIGS. 1 and 2-11. As an example, insulative cup 10 is made using an illustrative body blank 500 shown in FIGS. 12-14. A cup-manufacturing process 40 that makes body blank 500 and insulative cup 10 is shown in FIGS. 16-20. Other embodiments of body blanks 800, 820, 836, and 856 in accordance with the present disclosure that may be used to form insulative cups are illustrated in FIGS. 21-31. Rolled brims 16A, 16B, 16C that may be used with various insulative cups are illustrated in FIGS. 32-34. A first embodiment of an insulative cellular non-aromatic polymeric material used to form insulative cup 10 is shown in FIGS. 1A and 37. Another embodiment of an insulative cellular non-aromatic polymeric material in accordance with the present disclosure is shown in FIG. 38. [0067]An insulative cup 10 comprises a body 11 including a sleeve-shaped side wall 18 and a floor 20 coupled to body 11 to define an interior region 14 bounded by sleeve-shaped side wall 18 and floor 20 as shown, for example, in FIG. 1. Body 11 further includes a rolled brim 16 coupled to an upper end of side wall 18 and a floor mount 17 coupled to a lower end of side wall 18 as suggested in FIGS. 1-3. [0068]Body 11 is formed from a strip of insulative cellular non-aromatic polymeric material as disclosed herein. In accordance with the present disclosure, a strip of insulative cellular non-aromatic polymeric material is configured (by application of pressure—with or without application of heat) to provide means for enabling localized plastic deformation in at least one selected region (for example, regions 101-104) of body 11 to provide a plastically deformed first material segment having a first density located in a first portion of the selected region of body 11 and a second material segment having a second density lower than the first density located in an adjacent second portion of the selected region of body 11 without fracturing the insulative cellular non-aromatic polymeric material so that a predetermined insulative characteristic is maintained in body 11. [0069]A first region 101 of the selected regions of body 11 in which localized plastic deformation is enabled by the insulative cellular non-aromatic polymeric material is in sleeve-shaped side wall 18 as suggested in FIGS. 1, 3A, and 4. Sleeve-shaped side wall 18 includes an upright inner tab 514, an upright outer tab 512, and an upright fence 513 extending between inner and outer tabs 514, 512 as suggested in FIGS. 1, 3, and 4. Upright inner tab 514 is arranged to extend upwardly from floor 20 and configured to provide the first material segment having the higher first density in the first region 101 of the selected regions of body 11. Upright outer tab 512 is arranged to extend upwardly from floor 20 and to mate with upright inner tab 514 along an interface I therebetween as suggested in FIG. 4. Upright fence 513 is arranged to interconnect upright inner and outer tabs 514, 512 and surround interior region 14. Upright fence 513 is configured to provide the second material segment having the lower second density in the first region 101 of the selected regions of body 11 and cooperate with upright inner and outer tabs 514, 512 to form sleeve-shaped side wall 18 as suggested in FIGS. 3 and 4. [0070]A second region 102 of the selected regions of body 11 in which localized plastic deformation is enabled by the insulative cellular non-aromatic polymeric material is in a rolled brim 16 included in body 11 as suggested in FIGS. 1, 3B, and 6. Rolled brim 16 is coupled to an upper end of sleeve-shaped side wall 18 to lie in spaced-apart relation to floor 20 and to frame an opening into interior region 14. Rolled brim 16 includes an inner rolled tab 164, an outer rolled tab 162, and a rolled lip 163 as suggested in FIGS. 1, 3, and 6. Inner rolled tab 164 is configured to provide the first material segment having the higher first density in the second region 102 of the selected regions of body 11. Inner rolled tab 164 is coupled to an upper end of upright outer tab 512 included in sleeve-shaped side wall 18. Outer rolled tab 162 is coupled to an upper end of upright inner tab 514 included in sleeve-shaped side wall 18 and to an outwardly facing exterior surface of inner rolled tab 164. Rolled lip 163 is arranged to interconnect oppositely facing side edges of each of inner and outer rolled tabs 164, 162. Rolled lip 163 is configured to provide the second material segment having the lower second density in the second 102 of the selected region of body 11 and cooperate with inner and outer rolled tabs 164, 162 to form rolled brim 16 as suggested in FIG. 1. [0071]A third region 103 of the selected regions of body 11 in which localized plastic deformation is enabled by the insulative cellular non-aromatic polymeric material is in a floor mount 17 included in body 11 as suggested in FIGS. 1, 3C, 7, and 7A. Floor mount 17 is coupled to a lower end of sleeve-shaped side wall 18 to lie in spaced-apart relation to rolled brim 16 and to floor 20 to support floor 20 in a stationary position relative to sleeve-shaped side wall 18 to form interior region 14. Floor mount 17 includes a web-support ring 126, a floor-retaining flange 26, and a connecting web 25 extending between web-support ring 126 and floor-retaining flange 26 as suggested in FIG. 3. Web-support ring 126 is coupled to the lower end of sleeve-shaped side wall 18 and configured to provide the second material segment having the lower second density in the third region 103 of the selected regions of body 11. Floor-retaining flange 26 is coupled to floor 20 and arranged to be surrounded by web-support ring 126 as suggested in FIG. 3. Connecting web 25 is arranged to interconnect floor-retaining flange 26 and web-support ring 126. Connecting web 25 is configured to provide the first material segment having the higher first density in the third region 103 of the selected regions of body 11. Connecting web 25 is preformed in a body blank 500 in an illustrative embodiment before body blank 500 is formed to define insulative cup 10 as suggested in FIGS. 16-20. [0072]A fourth region 104 of the selected regions of body 11 in which localized plastic deformation is enabled by the insulative cellular non-aromatic polymeric material is in floor-retaining flange 26 of floor mount 17 as suggested in FIGS. 1, 3D, 9, 9A, and 9B. Floor-retaining flange 26 includes an alternating series of upright thick and thin staves arranged in side-to-side relation to extend upwardly from connecting web 25 toward interior region 14 bounded by sleeve-shaped side wall 18 and floor 20. This alternating series of thick and thin staves is preformed in a body blank 500 in an illustrative embodiment before body blank 500 is formed to define insulative cup 10 as suggested in FIGS. 16-20. As suggested in FIG. 7, a first 261 of the upright thick staves is configured to include a right side edge 261R extending upwardly from web 25 toward interior region 14. A second 262 of the upright thick staves is configured to include a left side edge 262L arranged to extend upwardly from web 25 toward interior region 14 and lie in spaced-apart confronting relation to right side edge 261R of the first 261 of the upright thick staves. A first 260 of the upright thin staves is arranged to interconnect right side edge 261R of the first 261 of the upright thick staves and left side edge 262L of the second 262 of the upright thick staves and to cooperate with left and right side edges 262L, 261R to define therebetween a vertical channel 263 opening inwardly into a lower interior region 264 bounded by floor-retaining flange 26 and a horizontal platform 21 included in floor 20 and located above floor-retaining flange 26 as suggested in FIG. 7. The first 260 of the upright thin staves is configured to provide the first material segment having the higher first density in the fourth region 104 of the selected regions of body 11. The first 261 of the upright thick staves is configured to provide the second material segment having the lower second density in the fourth region 104 of the selected regions of the body 11. [0073]Sleeve-shaped side wall 18 of body 11 includes a pair of tabs 514, 512 that mate to provide side wall 18 with a frustoconical shape in the illustrative embodiment shown in FIGS. 1, 3, 3A, and 4. Upright inner tab 514 of side wall 18 includes an inner surface 514i bounding a portion of interior region 14 and an outer surface 514o facing toward upright outer tab 512 as shown in FIGS. 4 and 4C. Upright outer tab 512 includes an inner surface 512i facing toward interior region 14 and mating with outer surface 514o of upright inner tab 514 to define the interface I between upright inner and outer tabs 514, 512. Upright outer tab 512 further includes an outer face 512o facing away from upright inner tab 514. Each of inner and outer surfaces of upright inner and outer tabs 514, 512 has an arcuate shape in a horizontal cross-section as suggested in FIG. 4C and subtends an acute angle of less than 20° as suggested in FIG. 4. [0074]Upright fence 513 of side wall 18 is C-shaped in a horizontal cross-section and each of upright inner and outer tabs 514, 512 has an arcuate shape in a horizontal cross-section as suggested in FIG. 4. Upright fence 513 includes an upright left side edge 513L and an upright right side edge 513R that is arranged to lie in spaced-apart confronting relation to upright left side edge 513L in FIG. 4C. Upright outer tab 512 is configured to have the higher first density and mate with upright inner tab 514 also characterized by the higher first density to establish a bridge 512, 514 arranged to interconnect upright left and right side edges 513L, 513R of upright fence 513. Bridge 512, 514 is formed of plastically deformed material having the higher first density. [0075]Upright fence 513 of side wall 18 has an inner surface 513i bounding a portion of interior region 14 and an outer surface 513o facing away from interior region 14 and surrounding inner surface 513i of upright fence 513 as shown, or example, in FIG. 4. Outer surface 513o cooperates with inner surface 513i of upright fence 513 to define a first thickness T1 therebetween. Upright inner tab 514 includes an inner surface 514i bounding a portion of interior region 14 and an outer surface 514o facing toward upright outer tab 512. Upright outer tab 512 includes an inner surface 512i facing toward interior region 14 and mating with outer surface 514o of upright inner tab 514 to define the interface I between upright inner and outer tabs 514, 512. Upright outer tab 512 further includes an outer face 512o facing away from upright inner tab 514. Inner and outer surfaces of upright inner tab 514 cooperate to define a second thickness T2I therebetween that is less than the first thickness T1. Inner and outer surfaces of upright outer tab 512 cooperate to define a third thickness T2O that is less than the first thickness T1. [0076]Rolled brim 16 of body 11 is coupled to an upper end of sleeve-shaped side wall 18 to lie in spaced-apart relation to floor 20 and to frame an opening into interior region 14 as suggested in FIGS. 1 and 3B. Inner rolled tab 164 of rolled brim 16 is configured to provide the plastically deformed first material segment having the higher first density and to include oppositely facing left and right side edges. Rolled lip 163 of rolled brim 16 is arranged to interconnect the oppositely facing left and right side edges of inner rolled tab 164 and configured to provide the second material segment having the lower second density. Outer rolled tab 162 of rolled brim 16 is coupled to an outwardly facing surface of inner rolled tab 164 as suggested in FIG. 1 to provide an outer shell covering inner rolled tab 164 and formed of plastically deformed material having the higher first density. Outer rolled tab 162 includes oppositely facing left and right side edges. Rolled lip 163 is arranged to interconnect the oppositely facing left and right side edges of outer rolled tab 162. Rolled lip 163 is C-shaped in horizontal cross-section. Each of inner and outer rolled tabs 164, 162 has an arcuate shape between the oppositely facing left and right side edges thereof to provide rolled brim 16 with an annular shape. [0077]Floor mount 17 of body 11 is coupled to a lower end of sleeve-shaped side wall 18 and to floor 20 to support floor 20 in a stationary position relative to sleeve-shaped side wall 18 to form interior region 14 as suggested in FIGS. 1-3 and 3C. Floor mount 17 includes a floor-retaining flange 26 coupled to floor 20, a web-support ring 126 coupled to the lower end of sleeve-shaped side wall 18 and arranged to surround floor-retaining flange 26, and a connecting web 25 arranged to interconnect floor-retaining flange 26 and web-support ring 126 as suggested in FIG. 3C. Connecting web 25 is configured to provide the first material segment having the higher first density. Connecting web-support ring 126 is configured to provide the second material segment having the lower second density. Each of connecting web 25 and web-support ring 126 has an annular shape. Floor-retaining flange 26 has an annular shape. Each of floor-retaining flange 26, connecting web 25, and web-support ring 126 includes an inner layer having an interior surface mating with floor 20 and an overlapping outer layer mating with an exterior surface of inner layer as suggested in FIGS. 3 and 7. [0078]Floor 20 of insulative cup 10 includes a horizontal platform 21 bounding a portion of interior region 14 and a platform-support member 23 coupled to horizontal platform 21 as shown, for example, in FIGS. 2 and 3C. Platform-support member 23 is ring-shaped and arranged to extend downwardly away from horizontal platform 21 and interior region 14 into a space 27 provided between floor-retaining flange 26 and the web-support ring 126 surrounding floor-retaining flange 26 to mate with each of floor-retaining flange 26 and web-support ring 126 as suggested in FIGS. 3 and 7. [0079]Platform-support member 23 of floor 20 has an annular shape and is arranged to surround floor-retaining flange 26 and lie in an annular space provided between horizontal platform 21 and connecting web 25 as suggested I FIGS. 3, 3C, and 3D. Each of floor-retaining flange 26, connecting web 25, and web-support ring 126 includes an inner layer having an interior surface mating with floor 20 and an overlapping outer layer mating with an exterior surface of inner layer as suggested in FIGS. 3 and 6. Inner layer of each of floor-retaining flange 26, web 25, and web-support ring 126 is arranged to mate with platform-support member 23 as suggested in FIG. 3C. [0080]Floor-retaining flange 26 of floor mount 17 is arranged to lie in a stationary position relative to sleeve-shaped side wall 18 and coupled to floor 20 to retain floor 20 in a stationary position relative to sleeve-shaped side wall 18 as suggested in FIGS. 3, 3C, and 7. Horizontal platform 21 of floor 20 has a perimeter edge mating with an inner surface of sleeve-shaped side wall 18 and an upwardly facing top side bounding a portion of interior region 14 as suggested in FIGS. 3 and 3C. [0081]Floor-retaining flange 26 of floor mount 17 is ring-shaped and includes an alternating series of upright thick and thin staves arranged to lie in side-to-side relation to one another to extend upwardly toward a downwardly facing underside of horizontal platform 21. A first 261 of the upright thick staves is configured to include a right side edge 261R extending upwardly toward the underside of horizontal platform 21. A second 262 of the upright thick staves is configured to include a left side edge 262L arranged to extend upwardly toward underside of horizontal platform 21 and lie in spaced-apart confronting relation to right side edge 261R of the first 261 of the upright thick staves. A first 260 of the upright thin staves is arranged to interconnect left and right side edges 262L, 261R and cooperate with left and right side edges 262L, 261R to define therebetween a vertical channel 263 opening inwardly into a lower interior region 264 bounded by horizontal platform 21 and floor-retaining flange 26 as suggested in FIGS. 3D, 7, and 9. The first 260 of the thin staves is configured to provide the first material segment having the higher first density. The first 261 of the thick staves is configured to provide the second material segment having the lower second density. [0082]Floor-retaining flange 26 of floor mount 17 has an annular shape and is arranged to surround a vertically extending central axis CA intercepting a center point of horizontal platform 21 as suggested in FIGS. 3C and 3D. The first 260 of the thin staves has an inner wall facing toward a portion of the vertically extending central axis CA passing through the lower interior region. Platform-support member 23 is arranged to surround floor-retaining flange 26 and cooperate with horizontal platform 21 to form a downwardly opening floor chamber 20C containing the alternating series of upright thick and thin staves therein. [0083]Each first material segment in the insulative cellular non-aromatic polymeric material has a relatively thin first thickness. Each companion second material segment in the insulative cellular non-aromatic polymeric material has a relatively thicker second thickness. [0084]Body 11 is formed from a sheet 115 of insulative cellular non-aromatic polymeric material that includes, for example, a strip of insulative cellular non-aromatic polymeric material 11S1 and a skin 11S2 coupled to one side of the strip of insulative cellular non-aromatic polymeric material 11S1 as shown in FIG. 12A. In one embodiment of the present disclosure, text and artwork or both can be printed on a film included in skin 11S2. Skin 11S2 may further comprise an ink layer applied to the film to locate the ink layer between the film and the strip of insulative cellular non-aromatic polymeric material. In another example, the skin and the ink layer are laminated to the strip of insulative cellular non-aromatic polymeric material by an adhesive layer arranged to lie between the ink layer and the insulative cellular non-aromatic polymer material. As an example, the skin may be biaxially oriented polypropylene. [0085]Insulative cellular non-aromatic polymeric material comprises, for example, a polypropylene base resin having a high melt strength, one or both of a polypropylene copolymer and homopolymer resin, and one or more cell-forming agents. As an example, cell-forming agents may include a primary nucleation agent, a secondary nucleation agent, and a blowing agent defined by gas means for expanding the resins and to reduce density. In one example, the gas means comprises carbon dioxide. In another example, the base resin comprises broadly distributed molecular weight polypropylene characterized by a distribution that is unimodal and not bimodal. [0086]An insulative cup 10 in accordance with one exemplary embodiment of the present disclosure includes a base 12 formed to include an interior region 14 and a rolled brim 16 coupled to base 12 as shown, for example, in FIG. 1. Base 12 includes a side wall 18, a support structure 19, and a floor 20 as shown in FIGS. 1, 2, 3C, and 9. Floor 20 is coupled to support structure 19 and side wall 18 to define interior region 14. Base 12 illustratively comprises an insulative cellular non-aromatic polymeric material that is configured (by application of pressure—with or without application of heat) to provide means for insulating a beverage or food placed in interior region 14, forming a structure having sufficient mechanical characteristics to support the beverage or food, and providing resistance to deformation and puncture. As shown for example in FIGS. 16-20, insulative cup 10 is formed in an illustrative cup-manufacturing process 40. [0087]Side wall 18 extends between rolled brim 16 and support structure 19 as shown in FIG. 3. Side wall 18 includes a top portion 22 of base 12 that is coupled to rolled brim 16 and a bottom portion 24 that is coupled to support structure 19. Support structure 19 is arranged to interconnect floor 20 and bottom portion 24 of side wall 18. In the illustrative embodiment, brim 16, side wall 18, and support structure 19 are formed from a unitary body blank 500 shown in FIG. 12. Insulative cup 10 is an assembly comprising the body blank 500 and the floor 20. As an example, floor 20 is mated with bottom portion 24 during cup-manufacturing process 40 to form a primary seal therebetween. A secondary seal may also be established between support structure 19 and floor 20. An insulative container may be formed with only the primary seal, only the secondary seal, or both the primary and secondary seals. [0088]Referring again to FIG. 1, top portion 22 of side wall 18 is arranged to extend in a downward direction 28 toward floor 20 and is coupled to bottom portion 24. Bottom portion 24 is arranged to extend in an opposite upward direction 30 toward rolled brim 16. Top portion 22 is curled during cup-manufacturing process 40 to form rolled brim 16. Rolled brim 16 and top portion 22 cooperate to form a mouth 32 that is arranged to open into interior region 14. [0089]Support structure 19 includes a floor-retaining flange 26 and a connecting web 25 as shown in FIG. 3. Connecting web 25 is coupled to bottom portion 24 of side wall 18 and arranged to extend radially away from bottom portion 24 toward interior region 14. Floor-retaining flange 26 is coupled to connecting web 25 and is arranged to extend in upward direction 30 toward floor 20 and interior region 14. Together, floor-retaining flange 26, connecting web 25, and bottom portion 24 cooperate to define receiving well 27 therebetween. As suggested in FIG. 3, a portion of floor 20 is arranged to extend downwardly into receiving well 27 and be retained between floor-retaining flange 26 and bottom portion 24. In the illustrative embodiment of FIG. 3, platform-support member 23 of floor 20 extends completely into receiving well 27 and contacts connecting web 25. [0090]In another embodiment shown in FIGS. 35 and 36, a cup 710 is similar to insulative cup 10, but a floor 720 includes a floor platform 721 and a floor ring 723 that is shorter than platform-support member 23 of insulative cup 10. Floor ring 723 does not extend completely into a receiving well 727 formed between a retaining flange 726, connecting web 725, and bottom portion 724. This approach allows floor 720 to be positioned during the cup-manufacturing process 40 without need for closely holding the dimensional length of floor ring 723 and reducing the chance for interference during cup-manufacturing process 40. [0091]As shown in FIGS. 1, 2, 3C, and 9, floor 20 includes horizontal platform 21 and a platform-support member 23. Horizontal platform 21 is, for example, a flat round disc which cooperates with side wall 18 to define interior region 14 therebetween. Platform-support member 23 is coupled to a perimeter of horizontal platform 21 and is arranged to extend in downward direction 28 away from horizontal platform 21 toward and into receiving well 27. As a result, horizontal platform 21 is spaced apart from any surface on which insulative cup 10 rests. [0092]The compressibility of the insulative cellular non-aromatic polymeric material used in accordance with the present disclosure to produce insulative cup 10 allows the insulative cellular non-aromatic polymeric material to be prepared for the mechanical assembly of insulative cup 10, without limitations experienced by other polymeric materials. The cellular nature of the insulative cellular non-aromatic polymeric material disclosed herein provides insulative characteristics as discussed below, while susceptibility to plastic deformation permits yielding of the insulative cellular non-aromatic polymeric material without fracture. The plastic deformation experienced when the strip of insulative cellular non-aromatic polymeric material is subjected to a pressure load is used to form a permanent set in the insulative cellular non-aromatic polymeric material after the pressure load has been removed. In some locations, the locations of permanent set are positioned in illustrative embodiments to provide, for example, controlled gathering of the insulative cellular non-aromatic polymeric material. [0093]Plastic deformation may also be used to create fold lines in the insulative cellular non-aromatic polymeric material to control deformation of the material when being worked during a cup assembly process. When deformation is present the absence of material in the voids formed by the deformation provides relief to allow the material to be folded easily at the locations of deformation. Referring now to FIGS. 4A and 5, an exemplary joint 600 between two portions 602 and 604 of insulative cellular non-aromatic polymeric material includes an interface 606. Interface 606 includes contact between a surface 608 of portion 602 and a surface 610 of portion 604, where the surfaces have adhered to one another to create a seal and a mechanical interlock between portions 602 and 604. The interface includes a melt line 612 where the non-aromatic polymeric material of each portion 602 and 604 have commingled to secure to one another. [0094]Portion 602 illustratively includes a structure of cells 614 that are enclosed by a non-aromatic polymeric material 624 with the cells 614 closed to encapsulate a blowing agent comprising a gas such as CO2, for example. When pressure is applied at a location 616, localized areas 618, 620, 622 of reduced cell size are created as the cells 614 are reduced in size and the non-aromatic polymeric material 624 flows to alter the shape of the cells 614. The flow of non-aromatic polymeric material 624 results in more non-aromatic polymeric material 624 being contained within a unit of volume than in undeformed areas such as areas 626 and 628, for example. Thus, when a sufficient load is applied, the thickness of the insulative cellular non-aromatic polymeric material is reduced and the density in localized areas is increased. [0095]In some instances, plastic deformation is achieved with a combination of force and heat. Heating the insulative cellular non-aromatic polymeric material may reduce the force necessary to deform the material. Localized heating results in softening that permits plastic flow, at lower forces, to accomplish the desirable permanent set. This permits deformation of the cells to achieve a thinner, denser material in localized areas in the insulative cellular non-aromatic polymeric material. [0096]In one illustrative embodiment, the present disclosure provides a strip 652 of insulative cellular non-aromatic polymeric material having predominantly closed cells 614 dispersed in the insulative cellular non-aromatic polymeric material 624 that exhibits unexpected, desirable physical properties at a given material thickness. Such properties include, for example, insulative properties, strength/rigidity properties, and puncture resistance properties. The illustrative material may be provided in a form such as, for example, an insulative cellular non-aromatic polymeric material sheet, strip, tube, thread, pellet, granule or other structure that is the result of extrusion of a polymer-based formulation, as herein described, through an extruder die. As described herein, an insulative cellular non-aromatic polymeric material may be mated with a biaxially oriented polypropylene film (i.e., film produced via a sequential biaxial stretching process involving two consecutive stretching steps conducted at two different temperatures) to establish a laminated sheet as well as a variety of final products such as cups or insulative containers, wraps, wound rolls of material, and the like. [0097]In one embodiment shown in FIG. 37, sheet 650 includes insulative cellular non-aromatic polymeric material 652 and a skin including a film 658, an ink layer 656, and an adhesive layer 654. As an example, ink layer 656 may be printed on film 658 prior to adhering the skin to insulative cellular non-aromatic polymeric material 652. In the illustrative embodiment of FIG. 37, film 658 comprises biaxially oriented polypropylene film. [0098]In another embodiment shown in FIG. 38, a sheet 660 is similar to sheet 650, but includes adhesive layer 654, ink layer 656, and film 658 on both sides of a strip of insulative cellular non-aromatic polymeric material 652. In other embodiments, ink layer(s) 656 may be omitted on one or both sides. [0099]In illustrative embodiments, an insulative cup is assembled from components that are formed from a material that is insulative. The insulative material includes a cellular non-aromatic polymeric structure that is tough and rigid. The insulative cellular non-aromatic polymeric material is deformable plastically under pressure load such that the material takes a permanent set after the pressure load has been removed to create structural features facilitating formation of the insulative cup. In some embodiments, orderly gathering of the material when folded or deformed is facilitated by the structure of the insulative cellular non-aromatic material. In illustrative embodiments, the insulative cellular non-aromatic polymeric material is flexible to permit the cup to be used in sub-freezing temperatures without fracturing the material. As used herein, the term non-aromatic polymer refers to a polymer that is devoid of aromatic ring structures (e.g., phenyl groups) in its polymer chain. [0100]Aromatic molecules typically display enhanced hydrophobicity when compared to non-aromatic molecules. As a result, it would be expected that changing from a polystyrene-based insulative cellular polymeric material to a polypropylene-based insulative cellular polymeric material would result in a change in hydrophobicity with a concomitant, but not necessarily predictable or desirable, change in surface adsorption properties of the resulting material. In addition, by virtue of the hydrocarbon chain in polystyrene, wherein alternating carbon centers are attached to phenyl groups, neighboring phenyl groups can engage in so-called pi-stacking, which is a mechanism contributing to the high intramolecular strength of polystyrene and other aromatic polymers. No similar mechanism is available for non-aromatic polymers such as polypropylene. Moreover, notwithstanding similar chemical reactivity and chemical resistance properties of polystyrene and polypropylene, polystyrene can be either thermosetting or thermoplastic when manufactured whereas polypropylene is exclusively thermoplastic. As a result, to the extent that surface adsorption properties, manufacturing options, and strength properties similar to those of polystyrene are sought, likely alternatives to polystyrene-based insulative cellular polymeric materials would be found in another aromatic polymer rather than in a non-aromatic polymer. [0101]In illustrative embodiments, the insulative cellular non-aromatic polymeric material is used as a substrate in a composite sheet that includes a film laminated to the insulative cellular non-aromatic polymeric material. The film is reverse printed before being laminated to the substrate so that the printing is visible through the film, with the film forming a protective cover over the printing. [0102]In illustrative embodiments, the insulative cellular non-aromatic polymeric material may includes one or more polypropylene materials as a base material. The laminated film is also polypropy
返回