具体实施方式:
[0054]The present invention will be described more fully hereinafter in the following detailed description of the invention, in which some but not all embodiments of the invention are described. Indeed, this invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; lather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements.
[0055]As used herein, when a specific definition is not otherwise provided, the term “substituted” refers to a halogen (F, Cl, Br or I), a hydroxyl group, a C1 to C20 alkoxy group, a nitro group, a cyano group, an amine group, an imino group, an azido group, an amidino group, a hydrazino group, a hydrazono group, a carbonyl group, a carbamyl group, a thiol group, an ester group, an ether group, a carboxyl group or or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1 to C20 alkyl group, a C2 to C20 alkenyl group, a C2 to C20 alkynyl group, a C6 to C30 aryl group, a C3 to C20 cycloalkyl group, a C3 to C20 cycloalkenyl group, a C3 to C20 cycloalkynyl group, a C2 to C20 heterocycloalkyl group, a C2 to C20 heterocycloalkenyl group, a C2 to C20 heterocycloalkynyl group, a C3 to C30 heteroaryl group, or a combination thereof, replacing a corresponding number of hydrogen atoms.
[0056]As used herein, when a specific definition is not otherwise provided, the term “hetero” refers to one or more heteroatoms including N, O, S, P, or a combination thereof, replacing a corresponding number of hydrogen atoms in a cyclic group.
[0057]As used herein, when a specific definition is not otherwise provided, the term “(meth)acrylate” refers to both “acrylate” and “methacrylate”, and the term “(meth)acrylic acid” refers to “acrylic acid” and “methacrylic acid”.
[0058]The photosensitive resin composition according to one embodiment includes (A) a cardo-based resin, (B) a reactive unsaturated compound, (C) a pigment, (D) an initiator, and (E) a solvent.
[0059]Hereinafter, each component is described in detail.
[0060](A) Cardo-Based Resin
[0061]The cardo-based resin includes repeating units represented by the following Chemical Formulae 1 and 2.
[0062]In Chemical Formulae 1 and 2,
[0063]R3, R4, R13 and R14 are the same or different and are independently hydrogen, halogen, or substituted or unsubstituted C1 to C20 alkyl,
[0064]R1 and R2 are the same or different and are independently hydrogen or substituted or unsubstituted (meth)acrylate,
[0065]each R11 and R12 are the same or different and are independently substituted or unsubstituted (meth)acrylate,
[0066]R5 is a substituent including an ethylenic double bond,
[0067]Z1 and Z11 are the same or different and are independently a single bond, O, CO, SO2, CR6R7, SiR8R9 (wherein R6 to R9 are the same or different and are independently hydrogen or substituted or unsubstituted C1 to C20 alkyl), or at least one of linking groups represented by the following Chemical Formulae 3-1 to 3-11,
[0068]Z2 and Z12 are the same or different and are independently an acid anhydride residual group or an acid dianhydride residual group,
[0069]m1, m2, m11 and m12 are independently integers ranging from 0 to 4, and
[0070]n1 and n11 independently range from 1 to 30.
[0071]In Chemical Formula 3-5,
[0072]Ra is hydrogen, ethyl, C2H4Cl, C2H4OH, CH2CH═CH2, or phenyl.
[0073]The repeating unit represented by the above Chemical Formula 2 includes (meth)acrylate at positions of R11 and R12 and also an ethylenic double bond at a R5 position. Since the cardo-based resin includes double bonds at three positions (R11, R12, and R5), the photosensitive resin composition including the same may have excellent compatibility, development properties, sensitivity, close contacting properties, and/or mechanical strength. In addition, the photosensitive resin composition may have excellent heat resistance and/or light resistance and thus can be used in high temperature applications.
[0074]Z2 and Z12 are independently derived from an acid anhydride or an acid dianhydride. Examples of acid anhydride and acid dianhydride compounds include without limitation benzenetetracarboxylic acid dianhydride, naphthalenetetracarboxylic acid dianhydride, biphenyltetracarboxylic acid dianhydride, benzophenonetetracarboxylic acid dianhydride, pyromellitic dianhydride, cyclobutanetetracarboxylic acid dianhydride, perylenetetracarboxylic acid dianhydride, tetrahydrofurantetracarboxylic acid dianhydride, tetrahydrophthacid anhydride, and the like, and combinations thereof.
[0075]R5 in the above Chemical Formula 2 may be substituents represented by the following Chemical Formulae 4-1 or 4-2, but is not limited thereto.
[0076]In Chemical Formula 4-1,
[0077]Q is hydrogen or substituted or unsubstituted C1 to C20 alkyl.
[0078]In Chemical Formula 4-2,
[0079]X1 to X5 are the same or different and are independently hydrogen, halogen, substituted or unsubstituted C1 to C20 alkyl, substituted or unsubstituted C6 to C30 aryl, substituted or unsubstituted amine, or substituted or unsubstituted C1 to C20 alkoxy, and
[0080]i is an integer ranging from 0 to 5.
[0081]n1 of the repeating unit represented by Chemical Formula 1 and n11 of the repeating unit represented by Chemical Formula 2 may be present at a mole ratio of about 1:99 to about 99:1, for example about 30:70 to about 70:30.
[0082]In some embodiments, the repeating unit represented by Chemical Formula 1 may be present in an amount of about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60; 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 mole percent. Further, according to some embodiments of the present invention, the amount of the repeating unit represented by Chemical Formula 1 can be in a range from any of the foregoing amounts to about any other of the foregoing amounts.
[0083]In some embodiments, the repeating unit represented by Chemical Formula 2 may be present in an amount of about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 mole percent. Further, according to some embodiments of the present invention, the amount of the repeating unit represented by Chemical Formula 2 can be in a range from any of the foregoing amounts to about any other of the foregoing amounts.
[0084]When n1 and n11 are present at the above mole ratio, development properties and sensitivity at curing can be excellent, which can result in fine pattern-forming properties.
[0085]The cardo-based resin may include a terminal group represented by the following Chemical Formula 5 at at least one of both terminal ends.
[0086]In Chemical Formula 5,
[0087]Z3 is at least one of linking groups represented by the following Chemical Formulae 6-1 to 6-7.
[0088]In Chemical Formula 6-1, Rb and Rc are the same or different and are independently hydrogen, substituted or unsubstituted C1 to C20 alkyl, ester, or ether.
[0089]In Chemical Formula 6-5, Rd is O, S, NH, substituted or unsubstituted C1 to C20 alkyl, C1 to C20 alkylamine, or C2 to C20 allylamine.
[0090]Examples of the cardo-based resin may include without limitation two or more of a fluorene-containing compound such as 9,9-bis(4-oxiranylmethoxyphenyl)fluorene, and the like; an anhydride compound such as benzenetetracarboxylic acid dianhydride, naphthalenetetracarboxylic acid dianhydride, biphenyltetracarboxylic acid dianhydride, benzophenonetetracarboxylic acid dianhydride, pyromellitic dianhydride, cyclobutanetetracarboxylic acid dianhydride, perylenetetracarboxylic acid dianhydride, tetrahydrofurantetracarboxylic acid dianhydride, tetrahydrophthacid anhydride, and the like; a glycol compound such as ethyleneglycol, propyleneglycol, polyethyleneglycol, and the like; an alcohol compound such as methanol, ethanol, propanol, n-butanol, cyclohexanol, benzylalcohol, and the like; a solvent compound such as propylene glycol methyl ether acetate, N-methylpyrrolidone, and the like; a phosphorus compound such as triphenylphosphine, and the like; and an amine or ammonium salt compound such as tetramethylammonium chloride, tetraethylammonium bromide, benzyldiethylamine, triethylamine, tributylamine, benzyltriethylammonium chloride, and the like, as well as combinations thereof.
[0091]The cardo-based resin may have a weight average molecular weight of about 500 to about 50,000 g/mol, for example about 1,000 to about 30,000 g/mol. When the cardo-based resin has a weight average molecular weight within these ranges, during manufacture of a light blocking layer, a pattern can be formed with minimal or no residue, and there may be minimal or no loss of film thickness during development, resulting in a good pattern.
[0092]The photosensitive resin composition may include the cardo-based resin in an amount of about 1 to about 30 wt %, for example about 3 to about 20 wt %, based on the total weight of the photosensitive resin composition. In some embodiments, the photosensitive resin composition may include the cardo-based resin in an amount of about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 wt. %. Further: according to some embodiments of the present invention, the amount of the cardo-based resin can be in a range from any of the foregoing amounts to about any other of the foregoing amounts. When the cardo-based resin is included in an amount within these ranges, excellent sensitivity, development properties, and close contacting properties may be realized.
[0093]The photosensitive resin composition may further include an acrylic-based resin in addition to the cardo-based resin.
[0094]The acrylic-based resin can be a copolymer of a first ethylenic unsaturated monomer and a second ethylenic unsaturated monomer that is copolymerizable with the first ethylenic unsaturated monomer, and a resin including at least one acrylic-based repeating unit.
[0095]The first ethylenic unsaturated monomer is an ethylenic unsaturated monomer including at least one carboxyl group. Examples of the first ethylenic unsaturated monomer include without limitation acrylic acid, (meth)acrylic acid, maleic acid, itaconic acid, fumaric acid, and the like, and combinations thereof.
[0096]The acrylic-based resin may include the first ethylenic unsaturated monomer in an amount ranging from about 5 to about 50 wt %, for example about 10 to about 40 wt %, based on the total weight of the acrylic-based resin. In some embodiments, the acrylic-based resin may include the first ethylenic unsaturated monomer in an amount of about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 wt. %. Further, according to some embodiments of the present invention, the amount of the first ethylenic unsaturated monomer can be in a range from any of the foregoing amounts to about any other of the foregoing amounts.
[0097]Examples of the second ethylenic unsaturated monomer may include without limitation aromatic vinyl compounds such as styrene, α-methylstyrene, vinyltoluene, vinylbenzylmethylether, and the like; unsaturated carboxylic acid ester compounds such as methyl(meth)acrylate, ethyl(meth)acrylate, butyl(meth)acrylate, 2-hydroxyethyl(meth)acrylate, 2-hydroxy butyl(meth)acrylate, benzyl(meth)acrylate, cyclohexyl(meth)acrylate, phenyl(meth)acrylate, and the like; unsaturated carboxylic acid amino alkyl ester compounds such as 2-aminoethyl(meth)acrylate, 2-dimethylaminoethyl(meth)acrylate, and the like; carboxylic acid vinyl ester compounds such as vinyl acetate, vinyl benzoate, and the like; unsaturated carboxylic acid glycidyl ester compounds such as glycidyl(meth)acrylate and the like; vinyl cyanide compounds such as (meth)acrylonitrile and the like; unsaturated amide compounds such as (meth)acrylamide and the like; and the like. They may be used singularly or as a mixture of more than two.
[0098]The acrylic-based resin may include the second ethylenic unsaturated monomer in an amount ranging from about 50 to about 95 wt %, for example about 90 to about 60 wt %, based on the total weight of the acrylic-based resin. In some embodiments, the acrylic-based resin may include the second ethylenic unsaturated monomer in an amount of about 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, or 95 wt %. Further, according to some embodiments of the present invention, the amount of the second ethylenic unsaturated monomer can be in a range from any of the foregoing amounts to about any other of the foregoing amounts.
[0099]Examples of the acrylic-based resin may include without limitation a methacrylic acid/benzylmethacrylate copolymer, a methacrylic acid/benzylmethacrylate/styrene copolymer, a methacrylic acid/benzylmethacrylate/2-hydroxyethylmethacrylate copolymer, a methacrylic acid/benzylmethacrylate/styrene/2-hydroxyethylmethacrylate copolymer, and the like, but are not limited thereto. They may be used singularly or as a mixture of two or more.
[0100]The acrylic-based resin may have a weight average molecular weight ranging from about 3,000 to about 150,000 g/mol, for example about 3,000 to about 40,000 g/mol, and as another example about 5,000 to about 30,000 g/mol. When the acrylic-based resin has a weight average molecular weight within these ranges, the photosensitive resin composition can have good physical and chemical properties, appropriate viscosity, and/or close contacting properties (adhesion) with a substrate when used as a light blocking layer.
[0101]The acrylic-based resin may have an acid value ranging from about 20 to about 200 mgKOH/g, for example about 50 to about 150 mgKOH/g. When acrylic-based resin has an acid value within these ranges, excellent pixel resolution may be realized.
[0102]When the acrylic-based resin is included in the photosensitive resin composition, the cardo-based resin and the acrylic-based resin may be present at a weight ratio of about 99:1 to about 1:99, for example about 95:5 to about 50:50.
[0103]In some embodiments, the mixture of the cardo-based resin and the acrylic-based resin may include the cardo-based resin in an amount of about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 wt. %. Further, according to some embodiments of the present invention, the amount of the cardo-based resin can be in a range from any of the foregoing amounts to about any other of the foregoing amounts.
[0104]In some embodiments, the mixture of the cardo-based resin and the acrylic-based resin may include the acrylic-based resin in an amount of about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 wt. %. Further, according to some embodiments of the present invention, the amount of the acrylic-based resin can be in a range from any of the foregoing amounts to about any other of the foregoing amounts.
[0105]When the cardo-based resin and acrylic-based resin are included in amounts within these weight ratios, the photosensitive resin composition may exhibit excellent development properties and sensitivity and may provide a light blocking layer pattern with excellent pattern formation ability while inhibiting the formation of undercuts.
[0106](B) Reactive Unsaturated Compound
[0107]The reactive unsaturated compound may be any conventional monomer or oligomer known in the art for use in a photosensitive resin composition. Exemplary reactive unsaturated compounds include without limitation mono-functional and/or multi-functional ester(s) of (meth)acrylic acid including at least one ethylenic unsaturated double bond.
[0108]The reactive unsaturated compound can promote sufficient polymerization at exposure during pattern forming processes to form patterns having excellent heat resistance, light resistance, and/or chemical resistance, due to the ethylenic unsaturated double bond.
[0109]Examples of the reactive unsaturated compound may include without limitation ethylene glycol diacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, triethylene glycol dimethacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, bisphenol A epoxyacrylate, ethyleneglycolmonomethylether acrylate, trimethylolpropane triacrylate, trisacryloyloxyethyl phosphate, and the like, and combinations thereof.
[0110]Examples of commercially available reactive unsaturated compounds include witout limitation the following compounds. Examples of mono-functional (meth)acrylic acid esters may include without limitation Aronix M-101®, M-111®, M-114® (TOAGOSEI CHEMICAL INDUSTRY CO., LTD.); KAYARAD TC-110S®, TC-120S® (NIPPON KAYAKU CO., LTD.); V-158®, V-2311® (OSAKA ORGANIC CHEMICAL IND., LTD.), and the like. Examples of difunctional (meth)acrylic acid esters may include without limitation Aronix M-210®, M-240®, M-6200® (TOAGOSEI CHEMICAL INDUSTRY CO., LTD.), KAYARAD HDDA®, HX-220®, R-604® (NIPPON KAYAKU CO., LTD.), V-260®, V-312®, V-335 HP® (OSAKA ORGANIC CHEMICAL IND., LTD.), and the like. Examples of tri-functional (meth)acrylic acid esters may include without limitation Aronix M-309®, M-400®, M-405®, M-450®, M-7100®, M-8030®, M-8060® (TOAGOSEI CHEMICAL INDUSTRY CO., LTD.), KAYARAD TMPTA®, DPCA-20®, DPCA-30®, DPCA-60®, DPCA-120® (NIPPON KAYAKU CO., LTD.), V-295®, V-300®, V-360®, V-GPT®, V-3PA®, V-400® (Osaka Yuki Kayaku Kogyo Co. Ltd.), and the like. The reactive unsaturated compounds may be used singularly or as a mixture of two or more.
[0111]The reactive unsaturated compound may be treated with acid anhydride to improve development properties.
[0112]The photosensitive resin composition may include the reactive unsaturated compound in an amount ranging from about 1 to about 40 wt %, for example about 1 to about 20 wt %, based on the total weight of the photosensitive resin composition. In some embodiments, the photosensitive resin composition may include the reactive unsaturated compound in an amount of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 wt %. Further, according to some embodiments of the present invention, the amount of the reactive unsaturated compound can be in a range from any of the foregoing amounts to about any other of the foregoing amounts.
[0113]When the reactive unsaturated compound is included in an amount within these ranges, the photosensitive resin composition may exhibit sufficient curing upon exposure during pattern formation processes and a pattern formed thereof may exhibit reliability, heat resistance, light resistance, chemical resistance, resolution and/or close contacting properties (adhesion).
[0114](C) Pigment
[0115]The pigment may be an organic pigment, an inorganic pigment, or a combination thereof.
[0116]The pigment may include a red pigment, a green pigment, a blue pigment, a yellow pigment, a black pigment, and the like, or a combination thereof.
[0117]Examples of the red pigment include without limitation C.I. red pigment 254, C.I. red pigment 255, C.I. red pigment 264, C.I. red pigment 270, C.I. red pigment 272, C.I. red pigment 177, C.I. red pigment 89, and the like. Examples of the green pigment include without limitation halogen-substituted copper phthalocyanine pigments such as C.I. green pigment 36, C.I. green pigment 7, and the like. Examples of the blue pigment include without limitation copper phthalocyanine pigments such as C.I. blue pigment 15:6, C.I. blue pigment 15, C.I. blue pigment 15:1, C.I. blue pigment 15:2, C.I. blue pigment 15:3, C.I. blue pigment 15:4, C.I. blue pigment 15:5, C.I. blue pigment 16, and the like. Examples of the yellow pigment include without limitation isoindoline pigments such as C.I. yellow pigment 139, and the like, quinoptithalone pigments such as C.I. yellow pigment 138, and the like, nickel complex pigments such as C.I. yellow pigment 150, and the like. Examples of the black pigment include without limitation aniline black, perylene black, titanium black, carbon black, and the like. The pigments may be used singularly or as a mixture of two or more and are not limited to the above described pigments.
[0118]Among them, in order to implement light blocking of a light blocking layer efficiently, the black pigment may be included. When the black pigment is used, a color calibrating agent such as an anthraquinone-based pigment, perylene-based pigment, phthalocyanine-based pigment, azo-based pigment, and the like, and combinations thereof may be also used.
[0119]The photosensitive resin composition may further include a dispersing agent in order to improve dispersion of the pigment. The pigment may be surface-pretreated with a dispersing agent, or the pigment and dispersing agent may be added together during preparation of the photosensitive resin composition.
[0120]Examples of the dispersing agent may include without limitation non-ionic dispersing agents, anionic dispersing agents, cationic dispersing agents, and the like, and combinations thereof. Examples of the dispersing agent include without limitation polyalkylene glycol and esters thereof, polyoxyalkylene, polyhydric alcohol ester alkylene oxide addition products, alcohol alkylene oxide addition products, sulfonic acid esters, sulfonates, carboxylic acid esters, carboxylates, alkylamide alkylene oxide addition products, alkyl amines, and the like. The dispersing agents may be used singularly or as a mixture of two or more.
[0121]Commercially available examples of the dispersing agent include without limitation: DISPERBYK-101, DISPERBYK-130, DISPERBYK-140, DISPERBYK-160, DISPERBYK-161, DISPERBYK-162, DISPERBYK-163, DISPERBYK-164, DISPERBYK-165, DISPERBYK-166, DISPERBYK-170, DISPERBYK-171, DISPERBYK-182, DISPERBYK-2000, DISPERBYK-2001, and the like (BYK); EFKA-47, EFKA-47EA, EFKA-48, EFKA-49, EFKA-100, EFKA-400, EFKA-450, and the like (EFKA chemicals); Solsperse 5000, Solsperse 12000, Solsperse 13240, Solsperse 13940, Solsperse 17000, Solsperse 20000, Solsperse 24000GR, Solsperse 27000, Solsperse 28000, and the like (Zeneka); or PB711, PB821, and the like (Ajinomoto).
[0122]The photosensitive resin composition may include the dispersing agent in an amount of about 0.1 to about 15 wt %, based on the total weight of the photosensitive resin composition. In some embodiments, the photosensitive resin composition may include the dispersing agent in an amount of about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 wt %. Further, according to some embodiments of the present invention, the amount of the dispersing agent can be in a range from any of the foregoing amounts to about any other of the foregoing amounts.
[0123]When the dispersing agent is included in an amount within the above ranges, dispersion of the photosensitive resin composition can be improved, which can provide excellent stability, development properties, and/or patterning properties during manufacture of a light blocking layer.
[0124]Optionally, the pigment may be pretreated with a water-soluble inorganic salt and a wetting agent. When the pigment is pretreated, it can have a finer primary particle size.
[0125]An exemplary pretreatment process includes kneading a pigment with a water-soluble inorganic salt and a wetting agent and filtering and washing the obtained pigment.
[0126]The kneading step may be performed at a temperature of about 40 to about 100° C. The filtering and washing process can include washing the inorganic salt using water and the like.
[0127]Exemplary water-soluble inorganic salts include without limitation sodium chloride, potassium chloride, and the like, and combinations thereof.
[0128]The wetting agent allows the pigment to be uniformly mixed with the inorganic salt and be pulverized. Examples of the wetting agent include without limitation alkylene glycol monoalkyl ethers such as ethylene glycol monoethylether, propylene glycol monomethylether, diethylene glycol monomethylether, and the like; alcohols such as ethanol, isopropanol, butanol, hexanol, cyclohexanol, ethylene glycol, diethylene glycol, polyethylene glycol, glycerine polyethylene glycol, and the like. These may be used singularly or as a mixture of two or more.
[0129]The kneaded pigment can have an average particle diameter ranging from about 30 to about 100 nm. When the pigment has an average particle diameter within the above range, a fine pattern may be effectively formed which can also have excellent heat resistance and light resistance.
[0130]The photosensitive resin composition may include the pigment in an amount of about 1 to about 30 wt %, for example about 2 to about 20 wt %, based on the total weight of the photosensitive resin composition. In some embodiments, the photosensitive resin composition may include the pigment in an amount of about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 wt %. Further, according to some embodiments of the present invention, the amount of the pigment can be in a range from any of the foregoing amounts to about any other of the foregoing amounts.
[0131]When the pigment is included in an amount within the above ranges, color reproducibility, curing capability, and/or close contacting properties of a pattern may be excellent.
[0132](D) Initiator
[0133]Exemplary initiators may include without limitation photopolymerization initiators, radical polymerization initiators, and the like, and combinations thereof.
[0134]The photopolymerization initiator may be any conventional initiator useful in a photosensitive resin composition. Non-limiting examples of photopolymerization initiators include acetophenone-based compounds, benzophenone-based compounds, thioxanthone-based compounds, benzoin-based compounds, triazine-based compounds, and the like, and combinations thereof.
[0135]Exemplary acetophenone-based compounds include without limitation 2,2′-diethoxy acetophenone, 2,2′-dibutoxy acetophenone, 2-hydroxy-2-methylpropinophenone, p-t-butyltrichloro acetophenone, p-t-butyldichloro acetophenone, 4-chloro acetophenone, 2,2′-dichloro-4-phenoxy acetophenone, 2-methyl-1-(4-(methylthio)phenyl)-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butan-1-one, and the like, and combinations thereof.
[0136]Exemplary benzophenone-based compounds include without limitation benzophenone, benzoyl benzoate, benzoyl methyl benzoate, 4-phenyl benzophenone, hydroxy benzophenone, acrylated benzophenone, 4,4′-bis(dimethyl amino)benzophenone, 4,4′-bis(diethylamino)benzophenone, 4,4′-dimethylaminobenzophenone, 4,4′-dichlorobenzophenone, 3,3′-dimethyl-2-methoxybenzophenone, and the like, and combinations thereof.
[0137]Exemplary thioxanthone-based compounds include without limitation thioxanthone, 2-methylthioxanthone, isopropyl thioxanthone, 2,4-diethyl thioxanthone, 2,4-diisopropyl thioxanthone, 2-chlorothioxanthone, and the like, and combinations thereof.
[0138]Exemplary benzoin-based compounds include without limitation benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzyldimethylketal, and the like, and combinations thereof.
[0139]Exemplary triazine-based compounds include without limitation 2,4,6-trichloro-s-triazine, 2-phenyl 4,6-bis(trichloromethyl)-s-triazine, 2-(3′,4′-dimethoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4′-methoxynaphthyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(p-methoxyphenyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(p-tolyl)-4,6-bis(trichloro methyl)-s-triazine, 2-biphenyl 4,6-bis(trichloro methyl)-s-triazine, bis(trichloromethyl)-6-styryl-s-triazine, 2-(naphto-1-yl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4-methoxynaphto-1-yl)-4,6-bis(trichloromethyl)-s-triazine, 2-4-tri chloromethyl(piperonyl)-6-triazine, 2-4-trichloromethyl(4′-methoxystyryl)-6-triazine, and the like, and combinations thereof.
[0140]The photopolymerization initiator may further include a carbazole-based compound, a diketone-based compound, a sulfonium borate-based compound, a diazo-based compound, a biimidazole-based compound, and the like, and combinations thereof.
[0141]Exemplary radical polymerization initiators may include without limitation peroxide-based compounds, azobis-based compounds, and the like, and combinations thereof.
[0142]Exemplary peroxide-based compound include without limitation ketone peroxides such as methylethylketone peroxide, methylisobutylketone peroxide, cyclohexanone peroxide, methylcyclohexanone peroxide, acetylacetone peroxide, and the like; diacyl peroxides such as isobutyryl peroxide, 2,4-dichlorobenzoyl peroxide, o-methylbenzoyl peroxide, bis-3,5,5-trimethylhexanoyl peroxide, and the like; hydro peroxides such as 2,4,4,-trimethylpentyl-2-hydro peroxide, diisopropylbenzenehydro peroxide, cumenehydro peroxide, t-butylhydro peroxide, and the like; dialkyl peroxides such as dicumyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, 1,3-bis(t-butyloxyisopropyl)benzene, t-butylperoxyvaleric acid n-butylester, and the like; alkyl peresters such as 2,4,4-trimethylpentyl peroxyphenoxyacetate, α-cumyl peroxyneodecanoate, t-butyl peroxybenzoate, di-t-butyl peroxytrimethyladipate, and the like; percarbonates such as di-3-methoxybutyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, bis-4-t-butylcyclohexyl peroxydicarbonate, diisopropyl peroxydicarbonate, acetyicyclohexylsulfonyl peroxide, t-butyl peroxyarylcarbonate, and the like, and combinations thereof.
[0143]Exemplary azobis-based compounds include without limitation 1,1′-azobiscyclohexane-1-carbonitrile, 2,2′-azobis(2,4-dimethylvaleronitrile), 2,2,-azobis(methylisobutyrate), 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile), α,α′-azobis(isobutylnitrile) and 4,4′-azobis(4-cyanovaleric acid), and the like, and combinations thereof.
[0144]Since the initiator absorbs light and is excited and then transmits energy, it may be used with a photo-sensitizer causing a chemical reaction.
[0145]Exemplary photo-sensitizers include without limitation tetraethylene glycol bis-3-mercapto propionate, pentaerythritol tetrakis-3-mercapto propionate, dipentaerythritol tetrakis-3-mercapto propionate, and the like, and combinations thereof.
[0146]The the photosensitive resin composition may include the initiator in an amount of about 0.01 wt % to about 10 wt %, for example about 0.1 to about 5 wt %, based on the total weight of the photosensitive resin composition. In some embodiments, the photosensitive resin composition may include the initiator in an amount of about 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 wt %. Further, according to some embodiments of the present invention, the amount of the initiator can be in a range from any of the foregoing amounts to about any other of the foregoing amounts.
[0147]When the initiator is included in an amount within these ranges, the photosensitive resin co