IPC分类号:
F21V8/00 | F21V17/10 | F21V21/005 | F21Y113/10 | F21Y115/10
国民经济行业分类号:
C4350 | C3874 | C4090 | C3879
当前申请(专利权)人:
NANOLEAF ENERGY TECHNOLOGY SHENZHEN LIMITED
原始申请(专利权)人:
NANOLEAF ENERGY TECHNOLOGY SHENZHEN LIMITED
当前申请(专利权)人地址:
1ST QIANWAN RD, QIANHAI SHENZHEN-HONGKONG COOPERATION AREA, UNIT 201, TOWER A, SHENZHEN CITY, GUANGDONG, CHINA
工商统一社会信用代码:
914403003105838467
工商注册地址:
深圳市前海深港合作区前湾一路1号A栋201室(入驻深圳市前海商务秘书有限公司)
发明人:
RODINGER, TOMAS | CHOW, HENRY | WONG, JENNELLE | DYCK, NATHAN | CHU, GIMMY
代理机构:
OPES IP CONSULTING CO., LTD.
摘要:
A series of interconnected (directly or indirectly), coupled lighting panels is provided, the coupled lighting panels linked to one another such that various shapes and designs can be created using various arrangements of the coupled lighting panels, the lighting panels of some embodiments adapted to avoid dark spots proximate to lighting circuitry disposed therein. The lighting panels can be luminaires, and may be provided in various geometric shapes, having various dimensionalities (e.g., a flat 2 dimensional shape, or a 3 dimensional shape). Various control systems, connectors, housings, frames, and lighting systems are also described.
技术问题语段:
However, providing coupled and/or controllable lighting panels may be technically challenging given that it may be desirable to have the lighting panels flexibly adapt to various types of internal environments.
技术功效语段:
[0005]The interconnected, coupled lighting panels have innovative optical and structural characteristics that provide tangible improvements in relation to emission of light, reduced cost of manufacture, and ease of detachable interconnect-ability. The interconnected panels can be configured, for example, for electrical interconnection such that power is shared across the interconnected panels by way of their coupling (e.g., via linking sections or external linker joints).
[0009]The improvements of some embodiments overcome challenges in other designs in relation to reducing “hot/dark spots” in relation to light observed by a viewer. These “hot/dark spots” occur as light is not evenly distributed or sources of emission from lighting elements is concealed or otherwise concentrated, which is undesirable in relation to interconnected, coupled light panels (where it is not the intended pattern or display shown) The improvements of some embodiments in particular overcome the use of a visible frame in other designs in order to conceal spots of concentrated light near the edges of the light panels. For some embodiments the challenge in other designs in relation to structural properties of the panel, such as upper bounds on weight and thickness, are overcome concurrently with the optical challenges. Thick and heavy panels are undesirable in relation to convenient and economical installation and shipping.
[0014]The re-direction of light and modification of emission characteristics provides for improved distribution, mixing of light such that optical hot spots, dark spots, and/or other type of band structure or visual artifact can be avoided. Accordingly, a substantial majority or proportion of the surface incident to a viewer can be utilized to provide mixed and evenly distributed light in a lighting panel that can be relatively flat and re-configurable (as opposed to alternative lights which may require bezels, trim, non-light emitting portions, covered areas, or larger sizes, among others, to hide the sections from which light is being produced or darker structural sections.
权利要求:
1. A luminaire comprising:
at least one light-emitting diode (LED);
a plurality of light-transmitting bodies; wherein each light-transmitting body of the plurality of light-transmitting bodies comprises:
a first surface through which light from the at least one LED enters the light-transmitting body;
a second surface through which the light exits the light-transmitting body;
a core coupled to both the first surface and the second surface, such that light propagates through the core between the first surface and the second surface; and
wherein, the first surface is situated on a first plane, the first plane having a lower elevation level relative to a plane of the second surface with respect of a direction through which the light exits the light-transmitting body;
wherein, a first light-transmitting body in the plurality of light-transmitting bodies is positioned in relation to at least one second light-transmitting body in the plurality of light-transmitting bodies to tile, to conceal, or to cover overlapping portions or interconnected portions of the first light-transmitting body and the at least one second light-transmitting body.
2. The luminaire of claim 1, wherein each light-transmitting body further comprises microstructures configured to redirect light incident thereto, a spatial arrangement of the microstructures inside the light-transmitting bodies, and the shape of the core of the light-transmitting bodies is adapted such that the surface element of the second surfaces of the plurality of light-emitting bodies emits a proportion of the light that entered the light-transmitting body through at least one of its first surfaces.
3. The luminaire of claim 2, wherein the spatial arrangement of the microstructures inside the light-transmitting bodies, and the shape of the core of the light-transmitting bodies is adapted to maintain a deviation of amount of emitted light from any surface element of the plurality of second surfaces from an average amount of emitted light from all surface elements of the plurality of second surfaces less than 20%.
4. The luminaire of claim 1, further comprising a third light-transmitting body in the plurality of light-transmitting bodies, wherein the second light-transmitting is tessellated in relation to the third light-transmitting body and a concealing portion of the second light-transmitting body conceals a concealed portion of the first surface of the third light-transmitting body from view at the acute angle relative a normal vector of any of the second surfaces of the light-transmitting bodies of the plurality of light-transmitting bodies;
wherein the third light-transmitting is tessellated in relation to the first light-transmitting body and a portion of the third light-transmitting body conceals a concealed portion of the first surface of the third first-transmitting body from view at the acute angle relative the normal vector of any of the second surfaces of the light-transmitting bodies of the plurality of light-transmitting bodies.
5. The luminaire of claim 1, wherein any first light-transmitting body in the plurality of light-transmitting bodies is arranged relative to the second light-transmitting body and a third light-transmitting body in the plurality of light-transmitting bodies, such that the first surface and the segment of the core of the first light-transmitting body are contained in the concealed portion of the first-light-transmitting body which is a cavity underneath the second surface of the second light-transmitting body in the plurality of light-transmitting bodies;
and the second surface of the first light-transmitting body covers from above a cavity in which the first surface and the segment of the core of the third light-transmitting body in the plurality of light-transmitting bodies is contained.
6. The luminaire of claim 5, wherein a recursive relation on indices of the plurality of light-transmitting bodies is applied, such that any second surface of a light-transmitting body covers from above one and only one first surface and a segment of the core of another light-transmitting body, and that any first surface and the segment of the core of a light-transmitting body is disposed in a cavity within the concealed portion underneath one and only one second surface of another light-transmitting body.
7. The luminaire of claim 1, wherein the light-transmitting body is thinner at a greater separation from the first surface than at a shorter separation from the first surface, given that both the shorter and greater separations are above a threshold, such that the relative amount of the light that propagates through the light-transmitting body that is redirected by reflection to exit the second surface increases as the distance from the shorter to the greater separation increases.
8. The luminaire of claim 1, wherein the surface elements of the second surface closest to the first surface of the light-transmitting body are positioned in relation to the core and the first surface, such that surface elements of the second surface closest to the first surface of the light-transmitting body are reachable by light that enters through the first surface and that propagates through the light-transmitting body in a path without scattering of a scattering angle greater than about 45 degrees.
9. The luminaire of claim 1, further comprising an internal electrical driver that is concealed as the luminaire is electrically powered and is viewed from an acute angle relative the normal vector of any of the second surfaces.
10. A luminaire comprising:
at least one light-emitting diode (LED);
a light-transmitting body; the light-transmitting body including:
a first surface through which light from the at least one LED enters the light-transmitting body and is dispersed through reflection or re-direction to generate at least first and second light rays;
a second surface through which light exits the light-transmitting body, the first surface situated on a first plane, the first plane having a lower elevation level relative to a plane of the second surface with respect of a direction through which the light exits the light-transmitting body;
a core coupled to both a first surface and a second surface, such that the light can propagate between the first surface and the second surface;
microstructures configured to redirect light incident in relation to at least one of the at least one first surface, the second surface, and the core;
at least one opaque layer which blocks light incident thereto; wherein the first surface and the second surface include structural features that cause internal reflection whereby the first light rays propagate through the light-transmitting body, reflect off the first surface and exit the second surface directly, and the second light rays propagate through the light-transmitting body, reflect internally within the core and exit the second surface at a position proximate to the opaque surface.
11. The luminaire of claim 10, wherein the spatial arrangement of the microstructures inside the light-transmitting bodies, and the shape of the core of the light-transmitting bodies are configured such that any surface element of the second surfaces emits a proportion of the light that entered the light-transmitting body through at least one of its first surfaces.
12. The luminaire of claim 11, wherein the spatial arrangement of the microstructures inside the light-transmitting bodies, and the shape of the core of the light-transmitting bodies is adapted such that a deviation of amount of emitted light from any surface element of the plurality of second surfaces from an average amount of emitted light from all surface elements of the plurality of second surfaces is less than 20%.
13. The luminaire of claim 10, comprising a first cavity and a second cavity, each of which contains an LED, a first surface and an opaque layer, wherein the shape of the core of the light-transmitting body and the placement of microstructures and the relative placement of the cavities are configured, such that a portion of all light from the LED of the first cavity enters the light-transmitting body through the first of the first surfaces, propagates through the core of the light-transmitting body to at least one segment of the core of the light-transmitting body that covers the second cavity in which the second LED, the second of the first surfaces and the second of the opaque layers are contained, and by reflection and scattering exits the light-transmitting body through the segment of the second surface above said segment of the core of the light-transmitting body.
14. The luminaire of claim 10, wherein the second surface of the light-transmitting body has a surface area more than one-hundred times as large as the surface area of the first surfaces of the light-transmitting body.
15. A luminaire comprising:
at least one light-emitting diode (LED);
a light-transmitting body; the light-transmitting body including:
a first surface through which light from the at least one LED enters the light-transmitting body and is dispersed through reflection or re-direction to generate at least first and second light rays;
a second surface through which light exits the light-transmitting body, the first surface situated on a first plane, the first plane having a lower elevation level relative to a plane of the second surface with respect of a direction through which the light exits the light-transmitting body;
a core coupled to both a first surface and a second surface, such that the light can propagate between the first surface and the second surface;
microstructures configured to redirect light incident in relation to at least one of the at least one first surface, the second surface, and the core;
at least one opaque layer which blocks light incident thereto; wherein the first surface and the second surface include structural features that cause internal reflection whereby the first light rays propagate through the light-transmitting body, reflect off the first surface and exit the second surface directly, and the second light rays propagate through the light-transmitting body, reflect internally within the core and exit the second surface at a position proximate to the opaque surface, wherein a plurality of distinct cavities are situated at corners of the light-transmitting body with a second surface, wherein each cavity contains at least one LED, a first surface, and an opaque material surface, wherein the shape of the core of the light-transmitting body and the placement of microstructures are configured, such that a portion of the light that enters the light-transmitting body through the first of the first surfaces exits through the segments of the second surface above the other cavity of the plurality of cavities.
16. The luminaire of claim 10, wherein three distinct cavities are situated at the three apexes of the light-transmitting body with a second surface in the shape of an equilateral triangle, wherein each cavity contains at least one LED, a first surface, and an opaque material surface, wherein the shape of the core of the light-transmitting body and the placement of microstructures are configured, such that a portion of the light that enters the light-transmitting body through the first of the first surfaces exits through the segments of the second surface above the second and third cavity.
技术领域:
[0002]Some embodiments generally relate to the field of lighting devices, and more specifically, to coupled lighting panels.
背景技术:
[0003]Architecture and interior design elements provide various applications in which controlled lighting is desirable. Lighting may impact the mood and well-being of occupants, and may provide a pleasing aesthetic quality to an environment. However, providing coupled and/or controllable lighting panels may be technically challenging given that it may be desirable to have the lighting panels flexibly adapt to various types of internal environments.
发明内容:
[0004]A series of interconnected (directly or indirectly), coupled lighting panels is provided, the coupled lighting panels linked to one another such that various shapes and designs can be created using various arrangements of the coupled lighting panels. The lighting panels can be luminaires, and may be provided in various geometric shapes, having various dimensionalities (e.g., a flat 2 dimensional shape, or a 3 dimensional shape).
[0005]The interconnected, coupled lighting panels have innovative optical and structural characteristics that provide tangible improvements in relation to emission of light, reduced cost of manufacture, and ease of detachable interconnect-ability. The interconnected panels can be configured, for example, for electrical interconnection such that power is shared across the interconnected panels by way of their coupling (e.g., via linking sections or external linker joints).
[0006]The interconnected lighting panels can receive control signals (e.g., ZigBee signals, PWM signals) which control lighting elements disposed within that control lighting characteristics of the lighting panels (e.g., brightness/dimness, spectral power distribution, light frequency), among others. Co-ordinated patterns can then be controlled for display across the interconnected panels, for example, based on an identified or detected layout of the interconnected panels (e.g., a wave effect that travels longitudinally across a plurality of panels).
[0007]An overall lighting system is provided in some embodiments where power is received at either a separate power control device (e.g., a hub attachment) or at one of the lighting panels. Power and control signals are propagated across the lighting panels through mechanical couplings and/or linker portions such that power and control signals are able to reach every one of the lighting panels, the overall geometry and shape identified through the connections upon which power and/or control is propagated. The system can, in some embodiments, receive control signals indicating specific panels be lit up, have particular colors, brightness/dimness, and convert and/or propagate these signals to control the specific panels accordingly.
[0008]A kit, in some embodiments, includes a lighting system having a power/control hub receiving power from a power source and a plurality of lighting panels. The kit is interoperable with smart home devices (e.g., Amazon Alexa™, Google Home Assistant™, Apple HomeKit™), and once the lighting panels are set up in accordance with a geometric shape, the lighting panels can be controlled through commands provided through the smart home devices.
[0009]The improvements of some embodiments overcome challenges in other designs in relation to reducing “hot/dark spots” in relation to light observed by a viewer. These “hot/dark spots” occur as light is not evenly distributed or sources of emission from lighting elements is concealed or otherwise concentrated, which is undesirable in relation to interconnected, coupled light panels (where it is not the intended pattern or display shown) The improvements of some embodiments in particular overcome the use of a visible frame in other designs in order to conceal spots of concentrated light near the edges of the light panels. For some embodiments the challenge in other designs in relation to structural properties of the panel, such as upper bounds on weight and thickness, are overcome concurrently with the optical challenges. Thick and heavy panels are undesirable in relation to convenient and economical installation and shipping.
[0010]The reduction of hot/dark spots, within the tightly prescribed structural properties of the luminaire, occurs due to specific geometric (e.g., shape, pattern) and light emission configurations as described in some preferred embodiments described herein. Such hot/dark spots are especially undesirable for interconnected lighting panels where a coordinated pattern is meant to be spread across one or more interconnected lighting panels.
[0011]This optical light transmission problem, among others, is addressed through the descriptions of the embodiments provided herein, including improved structural geometric features for guiding emitted light for reflections therein, application of microstructures for light dispersion, and improved approaches to tessellate or otherwise tile or conceal and/or cover portions of overlapping or otherwise interconnected lighting panels. Microstructures include material coatings applied to portions of surfaces (external or internal) of the lighting panels that modify or cause the dispersion of light incident to the microstructures. For example, they can be embossed, or otherwise etched onto surfaces.
[0012]The lighting panels, in some embodiments, have adjoining portions and/or surfaces that serve to propagate and/or re-direct light such that a “cover and cloaking” (in a preferred embodiment), or a “tessellate and conceal” (in an alternate preferred embodiment) mechanism is provided.
[0013]Microstructures of one or more materials are utilized in some embodiments and deposed within (e.g., positioned and/or oriented) or coupled with the panels to influence light emission/re-direction properties of the coupled lighting panels. The density, orientation, and/or configuration of the microstructures is tunable to some extent to modify lighting characteristics of the emitted light incident to the viewer. The lighting panels have internal surfaces that are angled or otherwise modify and/or redirect light rays, causing, for example, scattering or redirection within the lighting panels. There are alternative angles and geometries that are possible, and the present application describes several alternate approaches that represent preferred embodiments. However, there may be other geometries possible. In an embodiment, the microstructures are adapted such that a deviation of amount of emitted light from any surface element of the plurality of second surfaces from an average amount of emitted light from all surface elements of the plurality of second surfaces is less than 20% (or 5%, 10%, 15%, according to various other embodiments).
[0014]The re-direction of light and modification of emission characteristics provides for improved distribution, mixing of light such that optical hot spots, dark spots, and/or other type of band structure or visual artifact can be avoided. Accordingly, a substantial majority or proportion of the surface incident to a viewer can be utilized to provide mixed and evenly distributed light in a lighting panel that can be relatively flat and re-configurable (as opposed to alternative lights which may require bezels, trim, non-light emitting portions, covered areas, or larger sizes, among others, to hide the sections from which light is being produced or darker structural sections.
[0015]Accordingly, the lighting panels are more flexibly utilized for different types of ornamental and/or functional arrangements where lighting panels may have been constrained in the past (e.g., kitchen backsplash, walls of lighting panels, lighting panel art, and other creative applications thereof). A potential reason why these applications typically did not include controllable lighting panels includes issues relating to cost, heat, undesirable dark areas, panel thickness.
[0016]For more creative applications of the lighting panels, the physically constrained environments dictate requirements for thin-ness and flat-ness of the lighting panels, especially, for example, in areas where space in a venue or a premise is very expensive and there is a need to keep the panels as thin as possible while maintaining adequate lighting characteristics.
[0017]Methods of manufacturing are described herein as well, directed to improvements in economies of scale and ease of manufacturing.
[0018]In an aspect, there is provided a luminaire comprising: at least one light-emitting diode (LED); a plurality of light-transmitting bodies; wherein each light-transmitting body of the plurality of light-transmitting bodies comprises: a first surface through which the light from the at least one LED enters the light-transmitting body; a second surface through which the light exits the light-transmitting body; a core coupled to both the first surface and the second surface, such that light propagates through the core between the first surface and the second surface; wherein, the first surface is situated below a plane of the second surface; wherein, a first light-transmitting body in the plurality of light-transmitting bodies is arranged in relation to at least one second light-transmitting body in the plurality of light-transmitting bodies, such that, the LED, the first surfaces and segments of the core of the plurality of light-transmitting bodies are concealed as the luminaire is electrically powered and is viewed from an acute angle relative the normal vector of any of the second surfaces of the light-transmitting bodies of the plurality of light-transmitting bodies.
[0019]In another aspect, each light-transmitting body further comprises microstructures configured to redirect light incident thereto, a spatial arrangement of the microstructures inside the light-transmitting bodies, and the shape of the core of the light-transmitting bodies is adapted such that any surface element of the second surfaces emits a proportion of the light that entered the light-transmitting body through at least one of its first surfaces.
[0020]In another aspect, the spatial arrangement of the microstructures inside the light-transmitting bodies, and the shape of the core of the light-transmitting bodies is adapted such that a deviation of amount of emitted light from any surface element of the plurality of second surfaces from an average amount of emitted light from all surface elements of the plurality of second surfaces is less than 20%.
[0021]In another aspect, any first light-transmitting body in the plurality of light-transmitting bodies is arranged relative one second and one third light-transmitting body in the plurality of light-transmitting bodies, such that the first surface and the segment of the core of the first light-transmitting body are contained in a cavity underneath the second surface of the second light-transmitting body in the plurality of light-transmitting bodies, and the second surface of the first light-transmitting body covers from above a cavity in which the first surface and the segment of the core of the third light-transmitting body in the plurality of light-transmitting bodies is contained.
[0022]In another aspect, a recursive relation on indices of the plurality of light-transmitting bodies is applied, such that any second surface of a light-transmitting body covers from above one and only one first surface and a segment of the core of another light-transmitting body, and that any first surface and the segment of the core of a light-transmitting body is disposed in a cavity underneath one and only one second surface of another light-transmitting body.
[0023]In another aspect, the light-transmitting body is thinner at a greater separation from the first surface than at a shorter separation from the first surface, given that both the shorter and greater separations are above a threshold, such that the relative amount of the light that propagates through the light-transmitting body that is redirected by reflection to exit the second surface increases as the distance from the shorter to the greater separation increases.
[0024]In another aspect, the surface elements of the second surface closest to the first surface of the light-transmitting body are positioned in relation to the core and the first surface, such that surface elements of the second surface closest to the first surface of the light-transmitting body are reachable by light that enters through the first surface and that propagates through the light-transmitting body in a path without scattering of a scattering angle greater than about 45 degrees.
[0025]In another aspect, the core of the light-transmitting body is made of polymethylmethacrylate.
[0026]In another aspect, the core of the light-transmitting body is a contiguous body of transparent or semi-transparent material molded such that the first surface is below the second surface.
[0027]In another aspect, the core of the light-transmitting body is comprised of two parts coupled at an interface, wherein only one part is molded in a non-planar shape such that the first surface is below the second surface.
[0028]In another aspect, the second surfaces of the light-transmitting body have a surface area more than one-hundred times as large as the surface area of the first surfaces of the light-transmitting body.
[0029]In another aspect, the microstructures of the light-transmitting bodies are comprised of particles of Titanium Oxide that redirect light by random scattering.
[0030]In another aspect, the microstructures of the light-transmitting bodies are comprised of sub-millimeter indentations into the second surface of the light-emitting bodies.
[0031]In another aspect, the plurality of microstructures of the light-emitting bodies is contained within a sub-millimeter layer adjacent the second surfaces of the light-emitting bodies.
[0032]In another aspect, comprising an internal electrical driver that is concealed as the luminaire is electrically powered and is viewed from an acute angle relative the normal vector of any of the second surfaces.
[0033]In another aspect, the LED emits light comprised of red, green, blue and white light of tunable magnitudes as defined by tunable electrical current that electrically powers the LED.
[0034]In another aspect, the plurality of light-transmitting bodies comprises four light-transmitting bodies, wherein the second surfaces are shaped as squares, and the luminaire appears as a square as the luminaire is viewed from an acute angle relative the normal vector of any of the second surfaces.
[0035]In another aspect, there is provided a method for generating light from a plurality of light-transmitting bodies, the method comprising: powering, by an electric driver, at least one light-emitting diode (LED), the at least one LED coupled to a plurality of light-transmitting bodies; and arranging the light-transmitting bodies relative each other, such that a cavity underneath one light-transmitting body houses segments of a second light-transmitting body; and emitting light from the at least one LED, the light distributed such that the electric driver, the LED, and parts of the light-transmitting bodies are concealed from an observer as the electric driver powers the LED, and the observer views the emitted light from an acute angle relative any normal vector of the illuminated surfaces of the light-transmitting bodies.
[0036]In another aspect, the method further includes propagating the light that entered the light-transmitting body from the electrically powered LED to the illuminated surfaces, such that any surface element of the illuminated surfaces emits a proportion of the light.
[0037]In another aspect, the method further includes propagating the light that entered the light-transmitting body from the electrically powered LED to the illuminated surfaces, such that the deviation of amount of emitted light from any surface element of the illuminated surfaces from the average amount of emitted light from all surface elements of the illuminated surfaces is less than 20%.
[0038]In another aspect, the method further includes spatial arranging of any first light-transmitting body in the plurality of light-transmitting bodies relative one second and one third light-transmitting body in the plurality of light-transmitting bodies, such that the LED coupled to the first light-transmitting body is fully contained in a cavity underneath the illuminated surface of the second light-transmitting body in the plurality of light-transmitting bodies, and the illuminated surface of the first light-transmitting body covers from above a cavity in which the LED coupled to the third light-transmitting body in the plurality of light-transmitting bodies is contained.
[0039]In another aspect, the method further includes positioning the light transmitting bodies in accordance with a recursive relation on the indices of the plurality of light-transmitting bodies, such that any illuminated surface of a light-transmitting body covers from above at least one LED coupled to one other light-transmitting body of the plurality of light-transmitting bodies, and that any LED coupled to a light-transmitting body of the plurality of light-transmitting bodies is in a cavity underneath one and only one illuminated surface of another light-transmitting body.
[0040]In another aspect, there is provided a luminaire comprising: at least one light-emitting diode (LED); one light-transmitting body; the light-transmitting body including: a first surface through which light from the at least one LED enters the light-transmitting body; a second surface through which light exits the light-transmitting body; a core coupled to both a first surface and a second surface, such that light can propagate between a first surface and a second surface; at least one opaque layer which blocks light incident thereto; microstructures configured to redirect light incident in relation to at least one of the at least one first surface, the second surface, and the core; wherein the first surface is situated below the plane of the second surface; wherein the opaque layer is positioned relative the first surface and the LED, such that no light from the LED enters the light-transmitting body by any surface other than the first surface; wherein at least one segment of the core of the light-transmitting body covers from above at least one cavity in which the LED, the first surface and the opaque layer is contained, and wherein at least one segment of the second surface is disposed above said segment of the core such that, the LED, the opaque layer, the plurality of first surfaces are concealed as the luminaire is electrically powered and is viewed from an acute angle relative the normal vector of the second surface.
[0041]In another aspect, the spatial arrangement of the microstructures inside the light-transmitting bodies, and the shape of the core of the light-transmitting bodies are configured, such that any surface element of the second surfaces emits a proportion of the light that entered the light-transmitting body through at least one of its first surfaces.
[0042]In another aspect, the spatial arrangement of the microstructures inside the light-transmitting bodies, and the shape of the core of the light-transmitting bodies is adapted such that a deviation of amount of emitted light from any surface element of the plurality of second surfaces from an average amount of emitted light from all surface elements of the plurality of second surfaces is less than 20%.
[0043]In another aspect, the luminaire includes a cavity which contains the LED, a first surface and an opaque layer, wherein the shape of the core of the light-transmitting body and the placement of microstructures are adapted, such that a portion of all light from the LED enters the light-transmitting body through the first surface is redirected by reflection and scattering, propagates through the segment of the core of the light-transmitting body that covers from above the cavity in which the LED, the first surface and the opaque layer is contained, and by reflection and scattering exits the light-transmitting body through the segment of the second surface above the segment of the core of the light-transmitting body.
[0044]In another aspect, the luminaire includes at least two cavities each of which contains an LED, a first surface and an opaque layer, wherein the shape of the core of the light-transmitting body and the placement of microstructures and the relative placement of the cavities are configured, such that a portion of all light from the first LED enters the light-transmitting body through the first of the first surfaces, propagates through the core of the light-transmitting body to the segment of the core of the light-transmitting body that covers from above the cavity in which the second LED, the second of the first surfaces and the second of the opaque layers are contained, and by reflection and scattering exits the light-transmitting body through the segment of the second surface above said segment of the core of the light-transmitting body.
[0045]In another aspect, the core of the light-transmitting body is made of polymethylmethacrylate.
[0046]In another aspect, the core of the light-transmitting body is a contiguous body of transparent or semi-transparent material molded such that the first surface is below the second surface.
[0047]In another aspect, the core of the light-transmitting body is comprised of two parts coupled via an interface, wherein only one part is molded in a non-planar shape such that the first surface is below the second surface.
[0048]In another aspect, the second surfaces of the light-transmitting body have a surface area more than one-hundred times as large as the surface area of the first surfaces of the light-transmitting body.
[0049]In another aspect, the microstructures of the light-transmitting bodies are comprised of particles of Titanium Oxide that redirect light by random scattering.
[0050]In another aspect, the microstructures of the light-transmitting bodies are comprised of sub-millimeter indentations into the second surface of the light-emitting bodies.
[0051]In another aspect, the plurality of microstructures of the light-emitting bodies is contained within a sub-millimeter layer adjacent the second surfaces of the light-emitting bodies.
[0052]In another aspect, the luminaire further includes an internal electrical driver that is concealed as the luminaire is electrically powered and is viewed from an acute angle relative the normal vector of any of the second surfaces.
[0053]In another aspect, the LED emits light comprised of red, green, blue and white light of tunable magnitudes as defined by tunable electrical current that electrically powers the LED.
[0054]In another aspect, four distinct cavities are situated at the four corners of the light-transmitting body with a second surface in the shape of a square, wherein each cavity contains at least one LED, a first surface, and an opaque material surface, wherein the shape of the core of the light-transmitting body and the placement of microstructures are configured, such that a portion of the light that enters the light-transmitting body through the first of the first surfaces exits through the segments of the second surface above the second, third and fourth cavity.
[0055]In another aspect, three distinct cavities are situated at the three apexes of the light-transmitting body with a second surface in the shape of an equilateral triangle, wherein each cavity contains at least one LED, a first surface, and an opaque material surface, wherein the shape of the core of the light-transmitting body and the placement of microstructures are configured, such that a portion of the light that enters the light-transmitting body through the first of the first surfaces exits through the segments of the second surface above the second and third cavity.
[0056]In another aspect, there is provided method for emitting light, the method comprising: powering, using an electric driver, at least one light-emitting diode (LED), and coupling the at least one LED to one light-transmitting body that includes: a first surface through which light from the at least one LED enters the light-transmitting body; a second surface through which light exits the light-transmitting body; a core coupled to both the first surface and the second surface, such that light propagates through the core between the first surface and the second surface;
[0057]wherein, the first surface is situated below a plane of the second surface; and wherein at least one segment of the light-transmitting body covers from above at least one cavity in which the LED is contained, wherein the segment of the light-transmitting body is of a finite thickness, and the electric driver, the LED, and parts of the light-transmitting body are concealed from an observer as the electric driver powers the LED, and the observer views the emitted light from an acute angle relative any normal vector of the illuminated surface of the light-transmitting body.
[0058]In another aspect, the method includes propagating the light that entered the light-transmitting body from the LED to the illuminated surfaces such that any surface element of the illuminated surfaces emits a nonzero proportion of the light.
[0059]In another aspect, the method includes propagating the light that entered the light-transmitting body from the LED to the illuminated surfaces such that a deviation of amount of emitted light from any surface element of the illuminated surfaces from an average amount of emitted light from all surface elements of the illuminated surfaces is less than 20%.
[0060]In another aspect, there is provided a luminaire attachment frame system for operation in combination with a plurality of appreciably flat luminaires, each luminaire having an interior surface and an exterior surface, the luminaire attachment frame system comprising: a plurality of frames, each frame with a front face, a back face and four edges, a plurality of slots in the edges of the frames, each slot connecting the exterior of the frame and the interior of a frame along an axis in the plane of the front and back of the frame; at least one latch disposed in the frame detachably coupling the front face of the frame to the interior surface of the luminaire; a plurality of conductive bodies; wherein the pair of slots is provided in parallel alignment of a pair of adjacent frames accommodates one conductive body that bridges between the frames, and
[0061]a conductive body couples electrically to a luminaire detachably coupled to the front face of the frame such that a luminaire coupled to a frame conceals the frame, the slots, the latches, the conductive bodies as the luminaire is electrically powered and is viewed from an acute angle relative the normal vector of the exterior surface, and the plurality of luminaires is electrically powered given one luminaire in the plurality of luminaires is electrically powered.
[0062]In another aspect, the frame system includes comprising a plurality of holes between front face and back face of the frame, through which at least one screw or nail inserted attaches the frame to a rigid surface in contact with the back face of the frame.
[0063]In another aspect, an electrical signal transferred between a pair of adjacent luminaires by conduction of the conductive body, is modulated, such that a data array is transferred from one luminaire to the other luminaire.
[0064]In another aspect, the frame system further includes a plurality of slots in the edges of the frames, wherein a slot connects the exterior of the frame and the interior of a frame along an axis in the plane of the front and back of the frame, wherein the slots are shaped to accommodate a cable, such that a luminaire coupled to a frame conceals the cable that bridges across adjacent luminaires through the slots, and as the luminaire is electrically powered and is viewed from an acute angle relative the normal vector of the exterior surface.
[0065]In various further aspects, the disclosure provides corresponding systems and devices, and logic structures such as machine-executable coded instruction sets for implementing such systems, devices, and methods.
[0066]In this respect, before explaining at least one embodiment in detail, it is to be understood that the embodiments are not limited in application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.
[0067]Many further features and combinations thereof concerning embodiments described herein will appear to those skilled in the art following a reading of the instant disclosure.
具体实施方式:
[0091]Applicant is an innovator in lighting and has invested considerable research and development resources into developing modular and configurable lighting solutions that are, in some configurations, capable of integration with smart-home control solutions. Applicants' LED lighting technologies, for example, have provided improved clean energy/technology solutions that reduce an overall carbon footprint and energy consumption, relative to some other lighting technologies.
[0092]Manufacturing lighting panels, especially those incorporating “green technologies” is technically challenging as there are different aspects to be taken into consideration. Manufacturing may only be practical at sufficient scale, for example, and limitations on manufacturing resources and/or power consumption may require improved approaches and structural configurations as described herein. LED lighting, in particular, if more widely adopted, can reduce overall power consumption relative to conventional lighting.
[0093]However, there are challenges with LED lighting and producing LED lights, as the components themselves can be cumbersome, bulky, and can otherwise include inconsistent and/or deficient lighting that may not be aesthetically appealing.
[0094]As described herein, embodiments relate to an appreciably flat luminaire, the method of its construction, and a system to join several luminaires for illumination of a room, office or a space in general. An assembly, in some embodiments, is provided that includes a combination of luminaires connected to one another and/or a frame.
[0095]Flat panels (e.g., less than 1 cm in width) are especially challenging to manufacture. Without the additional space that a conventional lighting unit would have (e.g., a ballast portion, a housing area for circuitry), flat panels that are illuminated using LEDs are susceptible to uneven lighting, and an inability to produce light across the entire front surface of the flat panel as the required lighting components may themselves block out light.
[0096]The luminaire of the described embodiments overcomes these deficiencies through an improved structure. There are a number of preferred variants described below, and Applicant notes that the features of the variants are not limited to the described variants, but combinations and permutations of the features of the variants are also contemplated.
[0097]In FIG. 1A the luminaire 1101 is illustrated as an illuminated square of some dimensions. The luminaire has an exterior surface 1102, from which light rays or quanta are emitted into the room, office or space in general. The optical properties of the emitted light, in some embodiments, are tuneable, such as total flux of light, and hue and saturation of the optical spectrum.
[0098]There can be spatial variations with respect to the optical properties of the emitted light rays or quanta as they exit at the plurality of surface element 1201 of the exterior surface 1102. The variations can be such that a certain surface element 1201 emits a greater intensity of light than a neighboring surface element 1202.
[0099]This property of the luminous emittance can be quantified as a degree of light uniformity.
[0100]The appreciably flat luminaire 1101 can, in addition to an exterior surface 1102, be comprised of an interior surface or interior part in general 1103, which can be joined to the exterior surface 1102, as illustrated in FIG. 1B, which shows the appreciably flat luminaire 1101 at a ninety degree angle compared to FIG. 1A. As described in various embodiments, the external surface 1102 is a second surface through which the light exits the light-transmitting body, and the and the interior surface 1103 is a surface in which the light from the at least one LED enters the light-transmitting body.
[0101]The interior part includes components and materials 1112 that serve electrical, optical and mechanical functions of the luminaire. These materials can be opaque or aesthetically unfit to an interior design. Accordingly, these materials may be undesirable and require concealment or masking from the viewpoint of a target individual. As described herein, in a preferred embodiment, the interior part, including components and materials 1112 are hidden through an innovative approach to light distribution and emission that effectively conceals the components and materials 1112 through a combination of structural features.
[0102]The material of the panel 1111, which the exterior surface is part of, can be a transparent or semi-transparent material, which can include microscopic components that diffuse or scatter light rays or quanta. The luminaire has a specific thickness 1104, which is a sum of at least the thickness of the interior part and the panel, which can be considered a core of a luminaire, according to some embodiments, coupled to both the first surface and the second surface, such that light propagates through the core between the first surface and the second surface.
[0103]In its intended applications in architecture and interior design, the appreciably flat luminaire 1101 illuminates a room, office or space in general, and is viewed by a human observer 1107. The human observer 1107 can view the luminaire from a range of angles 1106 relative the normal vector 1105 of the exterior surface 1102.
[0104]This includes applications wherein the luminaire is mounted in the ceiling, on a wall, or as tiles in the floor. The surface area of the exterior surface 1102 can be 225 square centimeters. In some applications the thickness 1104 is small, such that the luminaire is easy to use, install, and is comprised of a modest amount of material, or in short, that the luminaire is practically perceived as a flat object. The thickness 1104 can be 10 millimeters, or less than 7% of the length of a side of the exterior surface 1102.
[0105]In some applications the degree of light uniformity is such that there are no surface elements 1201 where little to no light is emitted and thus would appear dark. In these applications therefore no opaque frame or other opaque material is part of the exterior surface 1102, such as its sides, and the interior parts 1103 are positioned such that they do not interact with the light rays or quanta to create dark areas the human observer 1107 can see within some range of angles 1106. The degree of uniformity can be quantified as the relative deviation of light intensity of any surface element 1201 from the average light intensity of all surface elements, and it can be, but is not limited to, 20% or less.
[0106]A plurality of luminaires of these properties can comprise a system of adjacent panels with an appearance of a certain geometric form, such that the plurality appears to a human observer 1107 within some range of viewing angles 1106 to be one contiguous luminaire. In some applications each individual panel 1101 is controllable with respect to its optical output.
[0107]Each luminaire is a light-transmitting body in a plurality of light-transmitting bodies and is structurally configured as described in various embodiments below such that each luminaire is arranged in relation to another light-transmitting body in the plurality of light-transmitting bodies, such that, the LED, the first surfaces and segments of the core of the plurality of light-transmitting bodies are concealed as the luminaire is electrically powered, from a viewing angle (e.g., an acute angle relative the normal vector of any of the second surfaces of the light-transmitting bodies of the plurality of light-transmitting bodies).
[0108]As described herein, an innovative approach to avoiding dark spots on relatively flat and thin panels includes luminaires that have structural adaptions that allow for spatial arrangements using tessellation and concealment approaches, or covering and cloaking approaches. These approaches, including structural features and spatial arrangements in accordance with the structural features, allow for practical implementations of flat, interlocking lighting panels that, at least from the perspective of a viewer, avoid dark spots that would otherwise be visible (e.g., due to the physical light-generation components and circuitry).
[0109]Improved interlocking structural features between panels, in addition to waveguide/internal reflection structural features are described in various embodiments. Further, a variety of optical effects can be executed for the plurality of luminaires that take into account the geometric form of the system of adjacent panels, in order to more broadly meet architectural and interior design requirements than luminaires or lighting products of other designs.
[0110]The design requirements described above are not obviously attained due to fundamental properties of optics and practical limitations of materials. Products on the market are therefore required to trade-off at least one objective against another, as will be described further below. The present innovation is a luminaire of novel design, and a system that combines a plurality of luminaires, such that the architectural and interior design specifications as described above and illustrated in FIG. 1 can be obtained with fewer trade-offs and less manual effort by an architect, interior designer or user in general. The luminaire, the method, the range of optical and mechanical configurations, and the technical reasons for these outcomes, are described in detail in the sections to folio.
[0111]Lighting Design Objectives and Constraints.
[0112]The source of the light of LED lamps and luminaires is one or a plurality of solid-state semiconductors, that is the light-emitting diodes. The dimensions of the diodes can be a few millimeters or less. Consequently they are very small in comparison with the dimensions of lamps and luminaires that are typically used in architecture and interior design. The light-emitting diodes can be packaged, that is be placed upon a substrate that can dissipate heat, coated in a protective substance, where the substance can contain a phosphor that through Stokes shifting alters the optical spectrum. One package can contain one or a plurality of light-emitting diodes. The plurality can be comprised of identical types, or of different types, of diodes. Packaged light-emitting diodes can be custom built or purchased off-the-shelf, including, but not limited to EVERLIGHT™ EAHP2835WM1, OSRAM™ DURIS E 2835, ROHM Semiconductor™ MSL0402RGBU1. In the description to follow, the term LED or LED source refers generally to an LED package however its construction or specification.
[0113]LEDs are powered by a direct current (DC) of electricity. The current can be of a certain magnitude, such as but not limited to 300 milliampere, 500 milliampere and 1000 milliampere. The electrical voltage can be of a certain magnitude, such as but not limited to 1.5 Volts, 2.0 Volts, 2.5 Volts, 4.0 Volts. An electrical current translates to a magnitude of light output, or luminous flux, from the LEDs, where these relations are published in spec sheets for different LEDs, or measured with electrical and optical equipment.
[0114]The electrical current can be supplied via an electrical driver, which is comprised of an electronic circuit and components that in different ways modulates and transforms an input current into an output current for the LEDs, while secondary properties of the electrical driver, such as size, lifetime, thermal properties, electromagnetic interference, total harmonic distortion, power factor, are within specified limits, where such specification can be regulated by governments. The electrical driver can be designed with skills in electrical engineering, such as documented in Fundamentals of Power Electronics by Robert W Erickson and Dragan Maksimovic, 2001, Springer.
[0115]The control of the electrical current can furthermore be encoded in data arrays that are received via an antenna tuned to receive electromagnetic radiation of a specific frequency, such as but not limited to 900 kilohertz, 2.4 gigahertz, and 5 gigahertz. The antenna can be integrated with the electronic circuit or be a separate component coupled to the electronic circuit.
[0116]The electrical driver can be comprised of components that absorb light, and the electrical driver can be considered to have undesirable aesthetic properties. Therefore, the electrical driver can be positioned within the luminaire such that it is concealed and interferes little if at all with the light from the LEDs. In some luminaires, the electrical driver is internal, such that the luminaire can be directly connected to a general-purpose electrical power supply, such as the electrical grid. In some luminaires, the electrical driver is external, such that the luminaire can be directly connected to an external circuit that supplies the electrical current as required by the LEDs of the luminaire. As LEDs are described below as being electrically powered, the electrical current can be from either an internal or an external electrical driver, unless otherwise stated.
[0117]The small dimensions of LEDs imply that LEDs are highly concentrated sources of light, or in other words, each individual LED in operation has a high luminous emittance. Therefore, many LED lamps and luminaires used in architecture and interior design include a secondary optics to optically transform, by some means of light-matter interaction, the light rays or quanta from the LEDs such that the light becomes pleasant to view. Highly concentrated dots of light in an architectural or interior design application create glare, in lighting design terminology. Glare is undesired in many applications, such as lighting for reading, orientation in a space or to create a pleasant ambiance in a restaurant or dining room at dusk or nighttime.
[0118]With an appropriate optical transformation, the small dimensions of the LEDs can however be beneficial to lighting and luminaire design, since they enable many more form-factors and thus enables additional architectural and interior design applications. Neither incandescent nor fluorescent lighting technology are readily amenable to a flat form-factor, for example.
[0119]Flat or thin form-factors can have benefits beyond aesthetic preferences, exploration and market differentiation. Over the course of a day for a given space, the activities may vary, the type of people that occupy it, and where they are in their circadian rhythm. These features of the use of the room, office or space in general can impact what comprises an optimal lighting for the human occupants. That includes lighting properties such as degree of contrast to the darker background, intensity and uniformity of the illuminated surfaces, and placement relative eye-level of the occupants. Many spatial as well as optical properties of the lighting can impact the comfort, efficiency, mood and well-being of the occupants of the space, see The Lighting Handbook 10th Edition published by the Illuminating Engineering Society.
[0120]One consequence of luminaires with novel form-factors can be that the conventional method to mechanically secure the lamp or luminaire by a lamp socket, such as a screw or pin socket, are not possible. Other means to couple luminaires to the electrical grid or secure luminaires in a room, office or space in general can be needed.
[0121]A thin luminaire of low weight can with less constraints be integrated with surfaces other than the ceiling when compared to heavier luminaires, or to lamps and luminaires that are thicker. Walls, floors, cupboards, pillars or support columns, as well as certain furniture and hardware can in addition to the ceiling be the area to which thin luminaires are mounted. Therefore, with appropriate mechanical design a thin luminaire enables additional means to design beneficial lighting in architecture and interior design.
[0122]A thin luminaire with the above properties can also be installed such that a plurality of luminaires are joined adjacent to at least one other luminaire of the plurality. In these cases the entire assembly can be operated as a single unit for illumination. This includes applications where light appears to spatially move throughout the assembled unit, either as a function of time and circadian rhythm of the human occupants of the architectural space, or as a function of ambient music sensed through a microphone, or as a function of events represented as changing digital data arrays or integers. Other applications of temporal and spatial adjustments of optical output from the assembled unit can be contemplated.
[0123]Some embodiments described below relate to the creation of lighting that is more suitable than lighting presently on the market to one or more of the varying needs of the people occupying an artificially illuminated space, by overcoming the technical challenges, optical, mechanical, and electrical, to transform the light from the concentrated LED sources into the desired form as well as enable the lighting device to be mounted on any of the many available surfaces in a room, office or space in general.
[0124]Optical Mechanisms of Light Mixing.
[0125]A luminaire comprised of an appreciably flat panel in a polygonal or other geometric shape 1101 can be created by injecting a plurality of light rays or quanta from small and concentrated LED sources into the light-transmitting body made of a transparent or semi-transparent material of the panel 1111, after which the light rays or quanta propagate through the light-transmitting body according to some plurality of pathways, to finally exit mostly through the larger exterior surface 1102 of the appreciably flat panel. For lighting design, a desirable feature of the light exiting the panel of the luminaire can be that it is less concentrated than the source LEDs, and that the light appears in large part or fully spread out over the surface of the panel, with complete uniformity as one limit of the plurality of optical transformations part of the plurality of pathways through the material of the panel. This feature implies that the light rays or quanta do not exit through optical hot spots of light, or bands of light of different intensities or other optical features, such as color variation.
[0126]A consequence of optical transformations is the mixing of the light rays or quanta. In one limit of optical transformations, the initially highly concentrated light rays or quanta from the LED sources are randomly scattered a very large number of times, such that all signs of the concentrated initial distribution of the light rays or quanta are lost. The mixing in practice is finite, but it can still be sufficient to bring light patterns or variations below the threshold the human eye can resolve.
[0127]A desirable feature of the light mixing that takes place at least in part within the panel material, is that a minimum of light rays or quanta are lost in one or several absorption events, scattering events or other optical transformations that reduce the amount of light rays or quanta that exit the panel through its larger exterior surface. Absorption of light rays or quanta can take place as the light interacts with molecular matter somewhere along a pathway, such that the internal energetic levels of the molecular matter is excited through the absorption of the energy of the light.
[0128]The degree of mixing of light can be a variable to consider in the design of a luminaire of certain light quality. The loss of light due to mixing can be a variable to consider in the optimization of the operational economy and energy efficiency of the electrically powered luminaire. These properties of the luminaire can be varied and optimized within the spatial constraints that the architecture or interior design imposes, or the prudent use of materials in order to create a product of sound economy. A plurality of variables of the luminaire construction that can affect one or both of the above features include, but it not limited to, type of material the light is injected into, the shape and dimensions of the light-transmitting body the light is injected into, the material or structural variation employed to mix the light rays or quanta, the optical material or structural variation used to stimulate the light rays or quanta to exit the material they were injected into, the relative placement of the source LEDs and the light-transmitting body the light is injected into, and any additional materials and their placement in order to further modulate the spatial or optical properties of the light rays or quanta that exits either towards the exterior or interior part of the luminaire.
[0129]One of the spatial requirements that can exist in the architectural or interior design applications is the appearance of a flat and frameless panel of light. In other words, the panel should appear fully illuminated to the eye without any dark boundary. As will be discussed further in sections below, this can enable novel designs as a plurality of panels are conjoined into a larger, uniformly operated luminaire.
[0130]One specific method to guide and mix light from LEDs in order to create less concentrated lighting is to inject the light rays or quanta from the source LEDs into a transparent or semi-transparent plastic material, such as a sheet of Poly Methyl Methacrylate (PMMA) or Polycarbonate (PC), that contains microstructures, such as small Titanium Oxide particles or microscopic structural bumps or indentations. Other materials for the semi-transparent material can be contemplated, such as glass, Styrene-Acrylonitrile or Allyl Diglycol Carbonate. Other materials or designs of microstructures can be contemplated, such as small air-bubbles, Zinc Oxide, white Kaolin clay, dimples or other laser-etched shapes, among others.
[0131]Once light enters the material of the panel, the light propagates inside the material, where the following set of steps can take place to any given ray or quantum of light along its pathway:
[0132]The light ray or quantum can collide with a Titanium Oxide particle, surface imperfections or other microstructure, upon which the light ray or quantum scatters by a scattering angle in an appreciably random manner, and continues to propagate in a new direction within the sheet of material.
[0133]The light ray or quantum can reach the interface between the panel material and the surrounding space at an angle less than a critical angle, and proceed to exit the material and propagate in the surrounding where it contributes to the illumination of the room, office or space in general.
[0134]The light ray or quantum can reach an interface between the panel material and an interior component of the luminaire at an angle less than a critical angle, and proceed to exit the material and either be fully absorbed, Stokes shifted to a longer wavelength, or reflected by the interior luminaire interface or component.
[0135]The light can reach the interface between the panel material and the surrounding space, or the interface between the panel material and the interior luminaire component at an angle greater than a critical angle, and be reflected back into the panel. This can be referred to as internal reflection. A reflection event can also lead to a degree of scattering, where the degree can range from nothing, similar to a perfect or near-perfect mirror, to complete, like from a mostly non-absorbing diffuse reflector like a white sheet of paper or marble.
[0136]The steps are provided as examples, and there may be more, less, different, or alternate steps.
[0137]The critical angle in the above enumeration is a function of the relative indices of refraction of the two materials that comprises a given interface. Snell's Law can be used to compute the critical angle. The relative indices of refraction of various materials are available in published reference tables, such as by Sultanova et al. in Acta Physica Polonica A, volume 116, 2009, pages 585-587. Or the relative indices of refraction can be measured for novel materials. The critical angle can be, but is not limited to, 39 degrees, 40 degrees, 42 degrees, and 45 degrees.
[0138]The light that exits the panel through the exterior surface of the luminaire and into the surrounding can be made to appear less concentrated than the LED sources, or fully uniform, as long as the following conditions hold for the plurality of pathways of the plurality of light rays or quanta: a number, greater than some threshold, of scattering and reflection events as described in (1) and (4) precede the exit event as described in (2), with a number, less than some threshold, of absorption events as described in (3) taking place.
[0139]The above conditions imply the following structural, optical and material relations: First, the shorter the distance the light rays or quanta propagate from their concentrated sources, the conditions of reduced concentration or degree of uniformity are less likely to hold, since the probability of scattering as described in (1) and (4) increases with the propagation distance in the light-transmitting body. In other words, below some distance from the LED sources, the light rays or quanta can be distributed visibly similar to how they are distributed at the LED sources.
[0140]Second, the greater the number of microstructures that are contained in a given distance of the light-transmitting body, the higher the probability of scattering as described in (1) and (4), but also the higher the probability of absorption events as described in (3). In other words, the placement of microstructures in the material can be adjusted to imply a greater density in some parts, but it can be at the cost of increased losses of light rays or quanta, which thus reduce the energy efficacy of the luminaire.
[0141]Third, the greater the area of the panel that is at an interface to a second material or interior component that fully or partially absorbs light rays or quanta, the higher the probability of absorption events, as described in (3), for a given distance of material.
[0142]The degree of optical uniformity, the energy efficacy, and thus operational efficacy, material specifications, as well as structural configurations of interior and optical components can therefore be linked through fundamental optical relations, as illustrated in the above description. In the sections to follow several luminaire constructions are described, including illustrative embodiments of the present innovation, which in different ways combine the structural, optical and material relations in order to attain a certain specified efficacy and appearance.
[0143]Configuration of Light Injection Point.
[0144]Given a panel of a material of optical properties as described above, and given an objective to attain optical output that is spread out and less concentrated than the LED sources by some threshold, the light from the LEDs can be injected from the back of the exterior surface of the panel, that is from an interior position, or from the edge of the exterior surface of the panel from some interior position, which is of a smaller surface area than the exterior surface. The two placements of the LED sources can be referred to as a back-lit configuration and an edge-lit configuration, respectively.
[0145]The back-lit configuration has been used in office lighting that uses a fluorescent tube light source. The fluorescent tube is behind a glass or plastic cover, where the cover is not transparent, rather filled with some particles or surface imperfections that scatter the light. The same configuration has been used with LED light sources, such as in U.S. Pat. No. 7,748,148, or the ILP6060B003 product sold and marketed by Integral-LED™ arm (https://www.integral-led.com/products/panels/panel-back-lit-600x600-25w-4000k-3500lm).
[0146]The same principle is used in many omnidirectional LED lamps, where a diffuser separates the LED sources and the surrounding, wherein densely packed microstructures in the diffuser creates the omnidirectional distribution after the light rays or quanta propagates in a mostly radial fashion through the curved diffuser.
[0147]In applications with requirements as illustrated in relation to FIG. 1 above, a frame is not necessary in order to conceal the light source from the human observer, since the light is spread out before exiting into the surrounding environment. However, the back-lit configuration can require the panel to be of a greater thickness 1104. The light rays or quanta propagate mostly in the orthogonal direction from the interior side of the panel 1103 through the material 1111 to the exterior surface 1102. Therefore, in order to increase the distance the light rays or quanta propagate, such that additional diffusion of the concentrated LED sources is accomplished, the thickness of the panel 1104 can be increased.
[0148]The edge-lit configuration can be used by placing the small LED sources at at least one of the thin edges of the panel material. The light rays or quanta mostly propagates parallel with the exterior surface of the panel material. As microstructures are encountered, the light rays or quanta can be significantly redirected and exit through the exterior surface. This approach has been used in other luminaires, like those in U.S. Pat. Nos. 8,128,253 and 9,110,209, or the EPY22-3030-7SR-21L product sold and marketed by GE Lighting™ (https://catalog.gelighting.com/luminaire/indoor-luminaires/recessed/lumination/f=ge-led-edgelit-panel/p=epy22-3030-75r-21l/d=0/?r=emea).
[0149]In applications with requirements as illustrated in relation to FIG. 1 above, the edge-lit configuration can be more easily combined with a thin panel than the back-lit approach. Because light propagates parallel with the longest dimension of the exterior surface 1102, rather than orthogonal to it, the typical propagation distance is relatively large. The exception is at surface elements very close to the LED sources, that is in the neighborhood of the edge of the panel. Therefore, the typical construction of edge-lit luminaires uses an opaque frame or additional material to block from view the exterior surface close to the LED sources, where otherwise concentrated light can be visible.
[0150]Both back-lit and edge-lit configurations can include optical events, such that light rays or quanta propagate through the luminaire without exiting the exterior surface of the panel. Illustrative examples of such events include: For the back-lit configuration, a number of the light rays or quanta can enter the panel material, but scatter at a very high angle and exit the panel in the direction of the interior side of the luminaire 1103. For the edge-lit configuration, a number of the light rays or quanta can enter the panel material, but not scatter at all, or only at certain angles relative a critical angle, and reach the opposite end of the panel from where they entered. Both illustrative examples of optical events can be ameliorated to a degree by additional optical and mechanical designs of the luminaire, including its interior parts, such that more light rays or quanta are further redirected towards the exterior surface.
[0151]Consequently, the back-lit and edge-lit configurations have both benefits and drawbacks with respect to the desired properties of a luminaire as described in relation to FIG. 1. Additional optical and structural designs are required in order to enable a luminaire with some or all of the beneficial properties as described above.
[0152]Thin and Frameless Luminaire Construction.
[0153]Frameless Panel Through Tessellation and Concealment.
[0154]In an illustrative embodiment, a light-transmitting body in the shape of a square panel of a transparent or semi-transparent material as described above, is physically divided into four smaller subunits in the shape of squares 1100, where the square-shapes have identical dimensions and are congruent with the larger square panel, seeFIG. 2A. A luminaire is provided that includes at least one light-emitting diode (LED); a plurality of light-transmitting bodies. Each subunit includes a first surface through which light from at least one LED enters the light-transmitting body; a second surface through which light exits the light-transmitting body; and a core coupled to both the first surface and the second surface, such that light propagates through the core between the first surface and the second surface.
[0155]The shapes, in concert, are arranged such that a recursive relation on indices of the plurality of light-transmitting bodies is