具体实施方式:
[0064]The present disclosure is now described more fully with reference to the accompanying drawings, in which example embodiments of the present disclosure are shown. The present disclosure may, however, be embodied in many different forms and should not be construed as necessarily being limited to the example embodiments disclosed herein. Rather, these example embodiments are provided so that the present disclosure is thorough and complete, and fully conveys the concepts of the present disclosure to those skilled in the relevant art. In addition, features described with respect to certain example embodiments may be combined in and/or with various other example embodiments in any permutational or combinatory manner. Different aspects and/or elements of example embodiments, as disclosed herein, may be combined in a similar manner. The term “combination”, “combinatory,” or “combinations thereof” as used herein refers to all permutations and combinations of the listed items preceding the term. For example, “A, B, C, or combinations thereof” is intended to include at least one of: A, B, C, AB, AC, BC, or ABC, and if order is important in a particular context, also BA, CA, CB, CBA, BCA, ACB, BAC, or CAB. Continuing with this example, expressly included are combinations that contain repeats of one or more item or term, such as BB, AAA, AB, BBC, AAABCCCC, CBBAAA, CABABB, and so forth. The skilled artisan will understand that typically there is no limit on the number of items or terms in any combination, unless otherwise apparent from the context.
[0065]The terminology used herein can imply direct or indirect, full or partial, temporary or permanent, action or inaction. For example, when an element is referred to as being “on,”“connected” or “coupled” to another element, then the element can be directly on, connected or coupled to the other element and/or intervening elements may be present, including indirect and or direct variants. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
[0066]Although the terms first, second, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not necessarily be limited by such terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer, or section discussed below could be termed a second element, component, region, layer, or section without departing from the teachings of the present disclosure.
[0067]The terminology used herein is for describing particular example embodiments only and is not intended to be necessarily limiting of the present disclosure. As used herein, the singular forms “a,” an and the are intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,”“includes” and/or “comprising,”“including” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
[0068]Example embodiments of the present disclosure are described herein with reference to illustrations of idealized embodiments (and intermediate structures) of the present disclosure. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, the example embodiments of the present disclosure should not be construed as necessarily limited to the particular shapes of regions illustrated herein, but are to include deviations in shapes that result, for example, from manufacturing.
[0069]Any and/or all elements, as disclosed herein, can be formed from a same, structurally continuous piece, such as being unitary, and/or be separately manufactured and/or connected, such as being an assembly and/or modules. Any and/or all elements, as disclosed herein, can be manufactured via any manufacturing processes, whether additive manufacturing, subtractive manufacturing, and/or other any other types of manufacturing. For example, some manufacturing processes include three-dimensional (3D) printing, laser cutting, computer numerical control (CNC) routing, milling, pressing, stamping, vacuum forming, hydroforming, injection molding, lithography, and so forth.
[0070]Any and/or all elements, as disclosed herein, can be a part of, are, or include, whether partially and/or fully, a solid, including a metal, a mineral, an amorphous material, a ceramic, a glass ceramic, an organic solid, such as wood and/or a polymer, such as rubber, a composite material, a semiconductor, a nanomaterial, a biomaterial and/or any combinations thereof. Any and/or all elements, as disclosed herein, can be a part of, are, or include, whether partially and/or fully, a coating, including an informational coating, such as ink, an adhesive coating, a melt-adhesive coating, such as vacuum seal and/or heat seal, a release coating, such as tape liner, a low surface energy coating, an optical coating, such as for tint, color, hue, saturation, tone, shade, transparency, translucency, non-transparency, luminescence, reflection, anti-reflection and/or holography, a photosensitive coating, an electronic and/or thermal property coating, such as for passivity, insulation, resistance or conduction, a magnetic coating, a water-resistant and/or waterproof coating, a scent coating and/or any combinations thereof. Any and/or all elements, as disclosed herein, can be rigid, flexible, and/or any other combinations thereof. Any and/or all elements, as disclosed herein, can be identical and/or different from each other in material, shape, size, color and/or any measurable dimension, such as length, width, height, depth, area, orientation, perimeter, volume, breadth, density, temperature, resistance, and so forth.
[0071]Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. The terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and should not be interpreted in an idealized and/or overly formal sense unless expressly so defined herein.
[0072]Furthermore, relative terms such as “below,”“lower,”“above,” and “upper” may be used herein to describe one element's relationship to another element as illustrated in the accompanying drawings. Such relative terms are intended to encompass different orientations of illustrated technologies in addition to the orientation depicted in the accompanying drawings. For example, if a device in the accompanying drawings were turned over, then the elements described as being on the “lower” side of other elements would then be oriented on “upper” sides of the other elements. Similarly, if the device in one of the figures were turned over, elements described as “below” or “beneath” other elements would then be oriented “above” the other elements. Therefore, the example terms “below” and “lower” can encompass both an orientation of above and below.
[0073]As used herein, words of approximation such as, without limitation, “about,”“substantial” or “substantially” refers to a condition that when so modified is understood to not necessarily be absolute or perfect but would be considered close enough to those of ordinary skill in the art to warrant designating the condition as being present. The extent to which the description may vary will depend on how great a change can be instituted and still have one of ordinary skilled in the art recognize the modified feature as still having the required characteristics and capabilities of the unmodified feature. In general, but subject to the preceding discussion, the term “about,”“substantial,” and/or “substantially” refers to an up to and including a +/−15% variation from the nominal value/term. Such variation is always included in any given value/term provided herein, whether or not such variation is specifically referred thereto.
[0074]U.S. Patent Application Publications 20150216331, 20150135426, 20130145543, 20130167335, 20130219736, 20140026316, 20140289955, 20140345814, 20150074896, 20150113722, 20150327729, 20150327728, 20150297038, 20150297037, 20150289724, 20150257610, 20150250363, 20150238052, 20150223643, 20150208873, 20150208766, 20150374160, 20150286638, 20140016837, 20150055834, 20160345755, 20160331193, 20160289909, 20160287027, 20160278582, 20160262577, 20160045080, and 20030215115 are fully incorporated by reference herein for any and/or all purposes, at least as disclosed herein or within any of such publications in any combinatory or permutational manner. Therefore, any combination in any permutational manner of any technology in any of such publications and present disclosure can be made for any and/or all purposes, whether disclosed herein or therein. To be even more clear, any systems/devices/methods of this disclosure can be combined with any systems/devices/methods of any of above-specified disclosures for any or all reasons disclosed herein or therein, as understood to those having ordinary skill in this art. For example, any partition devices, input devices, output devices, walls, blinds, sensors, accessories, or logic, whether hardware or software, or techniques of this disclosure can be combined with any partition devices, input devices, output devices, walls, blinds, sensors, accessories or logic, whether hardware or software, or techniques of any of above-mentioned disclosures. Note that if any disclosures are incorporated herein by reference and such disclosures conflict in part and/or in whole with the present disclosure, then to the extent of conflict, and/or broader disclosure, and/or broader definition of terms, the present disclosure controls. If such disclosures conflict in part and/or in whole with one another, then to the extent of conflict, the later-dated disclosure controls.
[0075]FIG. 1 shows an example embodiment of a shower curtain in an expanded state according to the present disclosure. A shower room contains a shower curtain 10, a shower rod 20, a bathtub/shower stall 30, a shower curtain rod coupler, such as a pair of rings 40, a top bar 50, and a bottom bar 60. Bathtub/shower stall 30 includes an opening for user entry and/or user exit.
[0076]Curtain 10 is in an expanded state as suspended from rod 20. In the expanded state, curtain 10 substantially covers the opening of bathtub/shower stall 30. Rod 20 is mounted substantially horizontally across the opening of bathtub/shower stall 30 and can be close to a ceiling of the shower room. Curtain 10 can be cordless, horizontally pleated, and/or cellular. Note that other types of shower curtains are possible according to alternative example embodiments, such as a venetian blind, a roman shade, or any other curtain typically used as a window covering. Curtain 10 can have light filtering, light polarizing, darkening, or blackout properties. The light filtering can be used to depict images and/or text and/or shadows on a wall within the shower for view of a person showering. Curtain 10 can have different designs depicted on any one or both sides of curtain 10. An example embodiment of curtain 10 can be similar to a cordless horizontally pleated window blind, which is raised and lowered by manual action. Curtain 10 can include waterproof material. The curtain 10 can be transparent, translucent, or opaque. Curtain 10 can have any shape, such as a parallelogram, a polygon, an ellipse, a triangle, and so forth. Curtain 10 can include a single, a double, or a multiple layer of collapsible voids that provide insulation when curtain 10 is in the extended state.
[0077]Rod 20 can be attached to bar 50, which can be rigid or semi-rigid, and/to or a top pleat/cell of curtain 10. Curtain 10 is secured to rod 20 via rings 40 coupled to bar 50 or to the top pleat/cell of curtain 10. Alternatively, curtain 10 can be secured to rod 20 or top pleat/cell via adhesives, magnets, mating mechanisms, suction cups and/or other similar securing/fastening/coupling methods. For example, support or mounting brackets/head-rails can be used along with screws for attachment. Curtain 10 can be mounted inside or outside the bracket. A valance may be used to cover the mounting bracket or head-rail. When a frame is used, then the frame itself may be made from any material, which allows attachment to curtain 10. Curtain 10 can travel within the frame, such as via frame rails. Curtain 10 can be pulled via a rod or other device, such as a pull tag. The mounting bracket can be attached to a wall or the ceiling. Moreover, at least two mounting brackets or bars can be used. This can allow for a part of curtain 10 to move substantially vertically, while another part of curtain 10 can move substantially horizontally. Curtain 10 can be controlled via a remote-control device. In addition, curtain 10 can be opened automatically when water from a showerhead is turned off. Alternatively, curtain 10 can be coupled to rod 20, the frame, or the wall in any way.
[0078]Curtain 10 can have a rigid or a semi-rigid bottom bar 60 and/or a bottom pleat/cell. Curtain 10 can have a weight on bar 60 and/or the bottom pleat/cell to keep curtain 10 in place, as discussed herein. Alternatively, curtain 10 can have adhesives, magnets, mating mechanisms, suction cups and/or any other securing/fastening/coupling technologies coupled to bar 60 and/or the bottom pleat/cell such that these securing/fastening/coupling technologies can couple bar 60 and/or the bottom pleat/cell to bathtub/shower stall 30 or a floor in the shower room. Curtain 10 can include at least one of vinyl, plastic, polymer, carbon fiber, metal, wood, rubber, and so forth. In some embodiments, curtain 10 can be a rolling shower curtain, which vertically and/or diagonally rises and lowers by automatic or manual action, such as pushing and pulling, for example, via a remote control, whether wired or wireless. Curtain 10 rolls into a roll coupled to or a part of a shower rod 20/frame/shower wall. Curtain 10 can stay in any position indefinitely.
[0079]Curtain 10 can be coated with anti-bacterial and/or anti-mildew and/or anti-mold coatings. Curtain 10 can be hung over one side of tub/shower stall 30, enclosing tub/shower stall 30, surrounding tub/shower stall 30, or if tub/shower stall 30 has some open geometric shape, like U-shaped, then curtain 10 can cover the open space. Curtain 10 can work with rod 20, which can be straight rod or straight rod, such as a wavy rod, an arcuate rod, a bent rod, a zigzag rod, a telescoping rod, a hingedly foldable rod, and so forth. Rod 20 can have a smooth surface, a rough surface, a rugged surface, and so forth.
[0080]FIG. 2 shows an example embodiment of a shower curtain in a semi-expanded state according to the present disclosure. Curtain 10 has a row of cells 70. In the semi-expanded state, some of cells 70 collapse onto each other into a stack. When viewed from a rear of curtain 10, external to tub/shower stall 30, the stack may have an appearance similar to stacked slats of a Venetian blind. Note that at least one of cells 70 can extend substantially horizontally and/or substantially diagonally.
[0081]To reach the semi-expanded state from the expanded state, i.e., to raise curtain 10, curtain 10 is pushed upward via bar 60 or the bottom cell/pleat. Such pushing can be manual and/or automatic. Pushing upward, such as via applying a force in a direction to rod 20, effectively causes cells 70 to collapse and fold. Resultantly, cells 70 upwardly collapse against each other into the stack. When the force is removed, curtain 10 can remain in the semi-expanded state indefinitely. Note that the semi-expanded state can be along any point along a vertical axis between rod 20 and tub/shower stall 30. In some example embodiments, whether alternatively or additionally to bar 60 remaining in place, bar 60 can move slightly, such as having a slight displacement for a short period of time before remaining in place. Also, even if the force is not completely removed, but a slight force remains, such as for example, above a certain threshold, bar 60 can remain in place. Note that in some example embodiments, curtain 10 can have a lower end, such as bar 60, and an upper end, such as bar 50. Alternatively or additionally, the lower end can be a lower cell/pleat of curtain 10 and the upper end can be an upper cell/pleat of curtain 10.
[0082]To reach the semi-expanded state from a retracted state, such as to lower curtain 10, curtain 10 is pulled downward via bar 60 or the bottom cell/pleat. Pulling downward causes cells 70 to unfold and expand. In some embodiments, the shower curtain 10 is raised or lowered via manual action of a user. In an alternative embodiment, the shower curtain 10 is raised or lowered automatically via a suitable control system. In some embodiments, curtain 10 can be raised or lowered by pressing a button, or operating a switch, or a touchscreen display, or pulling a lever, located on curtain 10 and/or with simultaneously manually raising or lowering curtain 10. In another alternative embodiment, the curtain can be raised or lowered through a voice command which is input into an input unit situated on shower curtain 10. For example, if a user says “up” then shower curtain 10 moves upward, and if the user says “down” then shower curtain 10 moves down. In some embodiments, when bar 60 or the bottom/cell pleat are adjacent to and/or in contact with tub/shower stall 30, a downward force can be applied to bar 50 toward bar 60 such that bar 50 forces cells 70 to collapse and fold. Resultantly, cell 70 downwardly collapse against each other into the stack. Note that such action can bring curtain 10 into any semi-expanded state or fully expanded state. Also, note that such force application can allow for entire bar 50 or part of bar 50 to move downward. In some embodiments, bar 60 can be lifted upward toward bar 20 from one side end such that another side end remains in its current position. When the one end is let go, then the one end can remain in its new position such that bar 60 is diagonally inclined between the one end and the other end. Therefore, at least one of cells 70, adjacent to the one end, is partially collapsed onto adjacent cell 70. In some embodiments, bar 50 can be pulled down away from rod 20 such that the line/cord becomes visible and bar 50 moves toward bar 60. Therefore, an opening can be created between bar 50 and rod 20, such as for air exhaust. Note that bar 50 can be pulled down on one side end such that bar 50 is inclined diagonally between the one end and another end of bar 50, which remains in its current position. Note that cells 70 adjacent to bar 50 at least partially collapse onto each other on the one end. In addition, bar 50 can be pulled down such that bar 50 lengthwise moves downward away from rod 20 to bar 60.
[0083]FIG. 3 shows an example embodiment of a shower curtain 10 in a fully retracted state according to the present disclosure. To reach the fully retracted state from the expanded state or from the semi-expanded state, curtain 10 is pushed upward from bar 60 or from the bottom cell/pleat. Pushing upward, such as via applying a force in the direction of rod 20, causes cells 70 to fold and adjacent cells 70 to collapse against each other into the stack. In the fully retracted state, all cells 70 are collapsed together into the stack such as where bar 60 or the bottom cell/pleat has been pushed upward until curtain 10 reaches bar 50 and/or, in some embodiments, rod 20. While FIGS. 1-3 show three different positions of curtain 10, any position between the fully retracted state and the fully expanded state is possible. To raise curtain 10 to a specific position, curtain 10 can be pushed upward until a desired position is reached. To lower curtain 10 to a desired position, curtain 20 can be pulled downward until the desired position is reached. Alternatively, curtain 10 can be raised or lower automatically via remote control.
[0084]FIG. 4A shows a side view cross section of an example embodiment of a cellular shower curtain according to the present disclosure. Curtain 10 can include a plurality of horizontally extending elements, such as cells 70, having a cellular structure. Each of cells 70 extends across a width of curtain 10 and in parallel relationship to other cells 70 of curtain 10. Each of cells 70 includes a front surface 72 and a rear surface 74. Front surface 72 of each of cells 70 faces bathtub/shower stall 30, while rear surface 74 of each of cells 70 faces away from bathtub/shower stall 30, such as into an interior of the shower room. Note that cells 70 have at least one cord/line 76 extending therethrough. Such cord/line 76 can be visible or invisible to nearby bystanders. Such cord/line 76 can include at least one of cotton, silk, plastic, carbon fiber, and so forth. The cord/line 76 can facilitate upward and/or downward movement of curtain 10 via facilitating collapse and/or expansion of cells 70. Such cord/line 76 can also include a wire for conducting current, as described herein. Note that when more than one cord/line 76 is used, then such plurality of cords/lines 76 can operate dependent or independent of each other.
[0085]While FIG. 4A shows rows of cells 70 having a parallelogram shape, such as a diamond shape, cells 70 of any suitably appropriate shape can be used, such as triangular, square, semicircular, rectangular, elliptical, pentagonal, hexagonal, and so forth. In some embodiments, cells 70 having a hexagonal configuration are used. Such hexagonally shaped cells are commonly referred to as honeycomb cells. In some embodiments, curtain 10 can include differently shaped cells 70, such as at least one cell has a hexagonal shape and at least one cell has a diamond shape. In an example embodiment of the present disclosure, instead of a single cell structure 70 as shown in FIG. 4A, curtain 10 can have a double or triple cellular structure where cells 70 where each row can have at least two cells 70, whether diagonal, vertical and/or horizontal to each other.
[0086]Cells 70 can trap hot and cold air for maximum energy efficiency and sound reduction. Cells 70 can be hollow, void, gas filled, and/or solid. At least one of cells 70 can be closed from at least one open end to prevent side water entry. The cells 70 can be formed of a flexible material such as plastic, vinyl, paper, cloth, foam, and other shower curtain relevant materials. However, other materials are possible according to alternative example embodiments. In some embodiments, curtain 10 can provide a plurality of distinct sets of cells 70. For example, an upper set 70 can comprise a first transparency and a lower set can comprise a second transparency, with the first transparency being distinct from the second transparency. For example, a caretaker can switch between the upper set and the lower set depending on who is showering, such as a young child or elderly. Note that other optical properties, such as translucency or opaqueness, or non-optical properties can also be used. For example, a shower partition can include a material that switches between a first optical state and a second optical state based on an application of an electrical energy to the material. In some embodiments, curtain 10 can be manufactured via spraying a cellular window blind with a hydrophobic spray and installed via suspending from rod 20.
[0087]FIG. 4B shows a side view of an example embodiment of a pleated shower curtain according to the present disclosure. Curtain 10 includes a plurality of pleats 80. As with the cellular configuration, pleated curtain 10 can be pushed upward from bar 60 attached to curtain 10 or from one of pleats 80, such as a bottom pleat. Pushing upward, such as via applying a force in a direction of rod 20, causes pleats 80 to fold against each other into a stack, such as in a Z-manner. To lower curtain 10, curtain 10 can be pulled downward from bar 60 or from one of pleats 80. Pulling downward causes pleats 80 to unfold. Note that at least one of pleats 80 can extend substantially horizontally and/or substantially diagonally.
[0088]Note that pleats 80 have at least one cord/line 76 extending therethrough. Such cord/line 76 can be visible or invisible to nearby bystanders. Such cord/line 76 can include at least one of cotton, silk, plastic, carbon fiber, and so forth. The cord/line 76 can facilitate upward and/or downward movement of curtain 10 via facilitating folding and/or unfolding of pleats 80. Such cord/line 76 can also include a wire for conducting current, as described herein. Note that when more than one cord/line 76 is used, then such plurality of cords/lines 76 can operate dependent or independent of each other.
[0089]Note that curtain 10 with pleats 80 can operate similarly to curtain with cells 70, such as for retraction and/or expansion. For example, to reach the semi-expanded state from the expanded state, such as to raise curtain 10, curtain 10 is pushed upward via bar 60 toward rod 20. Such pushing can be manual and/or automatic. Pushing upward, such as via applying a force in a direction to rod 20, effectively causes pleats 80 to fold onto each other. Resultantly, pleats 80 upwardly fold into the stack. When the force is removed, curtain 10 can remain in the semi-expanded state indefinitely. Note that the semi-expanded state can be along any point along a vertical axis between rod 20 and tub/shower stall 30.
[0090]In some embodiments, when bar 60 or the bottom/cell pleat are adjacent to and/or in contact with tub/shower stall 30, a downward force can be applied to bar 50 toward bar 60 such that bar 50 forces pleats 80 to fold. Resultantly, pleats 80 downwardly fold into the stack. Note that such action can bring curtain 10 into any semi-expanded state or fully expanded state. Also, note that such force application can allow for entire bar 50 or part of bar 50 to move downward. In some embodiments, bar 60 can be lifted upward toward bar 20 from one end such that another end remains in its current position. When the one end is let go, then the one end can remain in its new position such that bar 60 is diagonally inclined between the one end and the other end. Therefore, at least one of pleats 80 can be partially folded. In some embodiments, bar 60 can be lifted upward toward bar 20 from one side end such that another side end remains in its current position. When the one end is let go, then the one end can remain in its new position such that bar 60 is diagonally inclined between the one end and the other end. Therefore, at least one of pleats 80, adjacent to the one end, is partially folded onto adjacent pleat 80. In some embodiments, bar 50 can be pulled down away from rod 20 such that the line/cord becomes visible and bar 50 moves toward bar 60. Therefore, an opening can be created between bar 50 and rod 20, such as for air exhaust. Note that bar 50 can be pulled down on one side end such that bar 50 is inclined diagonally between the one end and another end of bar 50, which remains in its current position. Note that pleats 80 adjacent to bar 50 at least partially fold onto each other on the one end. In addition, bar 50 can be pulled down such that bar 50 lengthwise moves downward away from rod 20 to bar 60. In some embodiments, cellular curtain 10 and pleated curtain 10 can be manufactured from similar materials for similar appearance. Cellular curtain 10 and pleated curtain 10 can function and operate similarly. Cellular curtain 10 and pleated curtain 10 can each have a single lit cord, but both can be made cordless or with as top-down bottom-up curtains. Cellular curtain 10 and pleated curtain 10 can be translucent or include room darkening fabrics for either light control or light filtration. Cellular curtain 10 and pleated curtain 10 can have different size pleats.
[0091]Cellular curtain 10 can be honeycomb shaped due to a honeycomb design when looking at cells 70 from a side. Cellular curtain 10 and pleated curtain 10 can even be hung to function as shades on windows. Cellular curtain 10 can provide insulation to help with sound as well as energy. Cellular curtain 10 can have a small stack height as cells 70 can compress tightly when raised for minimal visual blockage. Cellular curtain 10 can include a wide range of colors due to its manufacturing material.
[0092]Pleated curtain 10 look like honeycomb cellular curtain 10 frontally. Pleated curtain 10 can have a small stack height as pleats 80 can compress tightly when raised for minimal visual blockage. Pleated curtain 10 can include a wide range of colors due to its manufacturing material.
[0093]FIG. 5A shows a side view of an example embodiment of a cellular shower curtain having a plurality of liquid channels according to the present disclosure. Curtain 10 has at least one channel 90. At least one of cells 70 has a front surface 72, which faces the user during showering Channel 90 is positioned on front surface 72. Channel 90 can be integral with, or connected to, a respective side or corner of one of cells 70, such as a front side or a front corner.
[0094]Channel 90 can be integral to curtain 10, such as unitary, or can be added to curtain 10. Channel 90 can extend horizontally and continuously from one end of curtain 10 to a second end of the curtain 10, or can extend only a partial way. Channel 90 can extend linearly, inclined, wavy, zigzag, and so forth Channel 90 can be perforated such that the water flowing through falls out of channel 90, such as onto another channel 90 or into tub/shower stall 30. Such fall through can create a cascading effect and/or waterfall effect if multiple instances of channel 90 allow for perforations. A converging effect can be created if multiple channels 90 converge, such as via inclining, into a single point receiving the water from such channels.
[0095]Channel 90 face the user showering Channel 90 function to direct the water, resulting from a showering process, into tub/shower stall 30. Thus, during the showering process and/or when curtain 10 is raised, the water flows into tub/shower stall 30 instead of splashing and/or spilling onto the user, a floor of the shower room, and/or all around the shower room Channel 90 can extend according to any geometric shape, such as linear, square, rectangle, trapezoid, circle, hexagon, pentagon, triangle, oval, and others, and/or pattern, such as lattice, wavy, and others.
[0096]Channel 90 is arranged such that each of cells 70 contains at least one channel 90 spaced apart from, and parallel to, an adjacent channel 90 of an adjacent cell 70. In an alternative embodiment, each of cells 70 can contain more than one channel 90, and/or can be arranged nearly parallel to, and/or perpendicular to, or non-coaxial with the other channels 90 such that different channels 90 are arranged side by side in the longitudinal direction. Channel 90 can include a bottom section 92 and a front section 94. Section 94 extends generally upwardly in a curved or linear manner from section 92. Channel 90 is designed to contain an amount of water falling from a showerhead, such as a drop, mist, and so forth Channel 90 guides, transports, and/or discharges the water at an end portion of channel 90, which transfers the water to a lip 96 or at predetermined spaces along channel 90 that have at least one opening for discharging the liquid. Lip 96 directs the water into tub/shower stall 30. Lip 96 extends from bottom bar 60 or the bottom pleat/cell. However, note that lip 96 can extend from other areas of curtain 10. Lip 96 can extend away from the curtain 10 or inward. Curtain 10 can have more than one lip 96. Lip 96 can include a hydroelectric generator/turbine and/or a thermoelectric generator/turbine, as discussed herein, to generate electric current via the water, whether hot, warm, or cold, flowing through lip 96. The generator/turbine can be coupled to circuitry for conducting electric current to a current input, such as a light source, and/or an electrically powered device