Additive manufacturing compositions and methods for the same

公开(公告)号:
US11446864B2
公开(公告)日:
2022-09-20
申请号:
US16/816105
申请日:
2020-03-11
授权日:
2022-09-20
受理局:
美国
专利类型:
授权发明
简单法律状态:
有效
法律状态/事件:
授权 | 质押 | 权利转移
IPC分类号:
B29C64/188 | B29C64/118 | B29C64/153 | C23C18/54 | G06T17/00 | B33Y10/00 | B33Y70/00 | B33Y80/00 | B33Y40/20 | B29K55/02 | B29K67/00 | B22F1/10
战略新兴产业分类:
前沿新材料
国民经济行业分类号:
C3523 | C3522
当前申请(专利权)人:
XEROX CORPORATION
原始申请(专利权)人:
PALO ALTO RESEARCH CENTER INCORPORATED
当前申请(专利权)人地址:
201 MERRITT 7, P.O. BOX 4505, 06851, NORWALK, CONNECTICUT
工商统一社会信用代码:
-
工商登记状态:
其他
工商注册地址:
-
工商成立日期:
1960-01-01
工商企业类型:
-
发明人:
WEI, JUNHUA | PLOCHOWIETZ, ANNE | EVANS, KENT | DORIS, SEAN E.
代理机构:
MH2 TECHNOLOGY LAW GROUP LLP
代理人:
-
摘要:
Additive manufacturing compositions and methods for fabricating a conductive article with the same are provided. The additive manufacturing composition may include a 3D printable material and a metal precursor disposed in the 3D printable material. The metal precursor may include a metal salt, a metal particle, or combinations thereof. The method may include forming a first layer of the article on a substrate, where the first layer includes the additive manufacturing composition, forming a second layer of the article adjacent the first layer, and binding the first layer with the second layer to fabricate the article. The method may also include plating a metal on at least a portion of the article to fabricate the conductive article.
技术问题语段:
The problem addressed in the patent text is the limited conductivity of conductive structures fabricated using conventional strategies, which are related to the amount or concentration of conductive elements incorporated into the building materials. This can result in unstable composite building materials with poor rheological properties that cause printing issues such as clogged printheads, poor resolution, and poor reproducibility. An improvement in 3D printing compositions and methods for fabricating conductive articles are needed to overcome these limitations.
技术功效语段:
The present patent describes an additive manufacturing composition for fabricating conductive articles using 3D printing technology. The composition includes a 3D printable material and a metal precursor disposed in the 3D printable material. The metal precursor may include a metal salt, a metal particle, or both. The 3D printable material may include at least one water insoluble polymer, such as ABS, PLA, PCL, or PTF. The metal precursor may include a metal cation or an anion. The composition may be a filament, powder, or resin. The method involves forming layers of the article and binding them together to create the final article. The metal precursor may be activated with a reducing agent before plating the metal onto the article. The patent also describes a computer aided design assembly for creating digital models of the article.
权利要求:
1. A kit for additive manufacturing of a conductive article, the kit comprising: an additive manufacturing composition comprising a 3D printable material and a metal precursor disposed in the 3D printable material, wherein the metal precursor comprises a metal salt, a metal particle, or combinations thereof; a water soluble 3D printable filament, powder, or resin; an activation solution comprising a reducing agent and configured to activate the metal precursor of the additive manufacturing composition; and a deposition solution configured to deposit metal on or about the activated metal precursor. 2. The kit of claim 1, wherein the 3D printable material comprises at least one water insoluble polymer. 3. The kit of claim 1, wherein the 3D printable material comprises one or more of acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), thermoplastic polyurethane (TPU), polystyrene, polypropylene (PP), polyethylene (PE), ethylene vinyl acetate (EVA), thermoplastic polyolefin (TPO), rubber, polycaprolactone (PCL), polyethylene terephthalate (PET), polyethylene terephthalate glycol (PTG), polyamide, polyether, polyester, polymethylmethacrylate (PMMA), polyurethane copolymers, ethylene vinyl alcohol, or combinations thereof. 4. The kit of claim 3, wherein the 3D printable material is selected from the group consisting of PLA, PCL, ABS, and combinations thereof. 5. The kit of claim 1, wherein the metal precursor comprises the metal salt, and wherein the metal salt comprises a metal cation selected from the group consisting of a nickel cation, a zinc cation, a tin cation, a platinum cation, copper cation, a palladium cation, a silver cation, a gold cation, an aluminum cation, an iron cation, a magnesium cation, and combinations thereof. 6. The kit of claim 1, wherein the metal salt comprises an anion selected from the group consisting of an acetylacetonate, 2-ethylhexanoate, phthalocyanine, fluoride, chloride, bromide, iodide, sulfide, nitrate, phosphate, carbonate, oxalate, formate, sulfate, triflate, bis(trifluoromethyl)sulfonimide, tetrafluoroborate, hexafluorophosphate, and combinations thereof. 7. The kit of claim 1, wherein the metal salt comprises one or more of copper (II) acetylacetonate (Cu(O2C5H7)2), copper sulfate (CuSO4.5H2O) copper chloride, copper citrate, copper acetate, copper phosphate (Cu3(PO4)2), gold chloride (AuCl), gold bromide (AuBr), gold iodide (AuI), tetrabromoauric acid (HAuBr4), tetrachloroauric acid (HAuCl4), palladium sulfate (PdSO4.7H2O), palladium chloride, palladium nitrate, palladium acetate, palladium 2,4-pentanedionate, or combinations thereof. 8. The kit of claim 1, wherein the composition consists of the 3D printable material and the metal precursor. 9. The kit of claim 8, wherein the 3D printable material consists of polylactic acid and the metal precursor consists of copper (II) acetylacetonate (Cu(O2C5H7)2). 10. The kit of claim 1, wherein the additive manufacturing composition is a 3D printable filament. 11. The kit of claim 1, wherein the additive manufacturing composition is a 3D printable powder. 12. The kit of claim 1, wherein the additive manufacturing composition is a 3D printable resin. 13. The kit of claim 1, wherein the metal precursor comprises the metal particle, and wherein the metal particle comprises one or more of copper particles, silver particles, gold particles, aluminum particles, magnesium particles, manganese particles, iron particles, nickel particles, zinc particles, tin particles, platinum particles, palladium particles, or combinations thereof. 14. A method for fabricating a conductive article with the kit of claim 1, the method comprising: forming a first layer of an article on a substrate, the first layer comprising the additive manufacturing composition; forming a second layer of the article adjacent the first layer, wherein the second layer comprises the water soluble 3D printable filament, powder, or resin, wherein the water soluble 3D printable filament, powder, or resin comprises a water soluble polymer; binding the first layer with the second layer to fabricate the article; and plating a metal on at least a portion of the article to fabricate the conductive article. 15. The method of claim 14, further comprising activating the metal precursors with the reducing agent. 16. The method of claim 15, wherein plating the metal on at least a portion of the article comprises an electroless plating process. 17. The method of claim 16, wherein the electroless plating process further comprises depositing metal on or about the activated metal precursors. 18. The method of claim 14, wherein the second layer further comprises a 3D printable material substantially free of any metal precursors. 19. The method of claim 14, further comprising: generating a digital model of the article with a computer aided design assembly; and partitioning the digital model into at least a first digital cross-section and a second digital cross-section, wherein forming the first layer of the article on the substrate comprises forming the first layer of the article on the substrate using the first digital cross-section as a first template; and wherein forming the second layer of the article adjacent the first layer comprises forming the second layer of the article adjacent the first layer using the second digital cross-section as a second template. 20. The method of claim 14, wherein the conductive article comprises a conductivity of at least 1E6 Siemens per meter (S/m).
技术领域:
[0001]The presently disclosed embodiments or implementations are directed to additive manufacturing or 3D printing compositions and methods for fabricating conductive articles with the 3D printing compositions.
背景技术:
[0002]Articles integrating conductive structures fabricated via an additive manufacturing or 3D printing process are highly desirable as they provide an assembly free process for fabricating complex articles with multiple functionalities. Conventional strategies for fabricating these conductive structures may often include incorporating conductive elements, such as metal particles, conductive polymers, or carbon based materials (e.g., graphene) into building materials (e.g., filaments, powder stocks, etc.) of the 3D printing process to prepare composite building materials, and printing or fabricating the conductive structure with the composite building materials. The conductivity achieved in the conductive structures fabricated via these conventional strategies, however, is limited. For example, the conductivity achieved in the conductive structures is directly related to the amount or concentration of the conductive elements that can be incorporated into the building materials, and the concentrations necessary to achieve bulk metal conductivity often results in unstable composite building materials that exhibit relatively poor rheological properties as compared to the building materials without the conductive elements. As such, utilizing the unstable composite building materials may often lead to various printing issues, such as clogged printheads, poor resolution, and poor reproducibility. [0003]What is needed, then, are improved 3D printing compositions and methods for fabricating conductive articles with the 3D printing compositions.
发明内容:
[0004]The following presents a simplified summary in order to provide a basic understanding of some aspects of one or more embodiments of the present teachings. This summary is not an extensive overview, nor is it intended to identify key or critical elements of the present teachings, nor to delineate the scope of the disclosure. Rather, its primary purpose is merely to present one or more concepts in simplified form as a prelude to the detailed description presented later. [0005]The present disclosure may provide an additive manufacturing composition for fabricating a conductive article. The additive manufacturing composition may include a 3D printable material and a metal precursor disposed in the 3D printable material. The metal precursor may include a metal salt, a metal particle, or combinations thereof. [0006]In some examples, the 3D printable material may include at least one water insoluble polymer. [0007]In some examples, the 3D printable material may include one or more of acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), thermoplastic polyurethane (TPU), polystyrene, polypropylene (PP), polyethylene (PE), ethylene vinyl acetate (EVA), thermoplastic polyolefin (TPO), rubber, nylon, polycaprolactone (PCL), polyethylene terephthalate (PET), polyethylene terephthalate glycol (PTG), polyamide, aromatic polyamide, polyether, polyester, polymethylmethacrylate (PMMA), polyurethane copolymers, ethylene vinyl alcohol, or combinations thereof. [0008]In some examples, the 3D printable material may be selected from the group consisting of PLA, PCL, ABS, and combinations thereof. [0009]In some examples, the metal precursor may include the metal salt. The metal salt may include a metal cation selected from the group consisting of a nickel cation, a zinc cation, a tin cation, a platinum cation, copper cation, a palladium cation, a silver cation, a gold cation, an aluminum cation, an iron cation, a magnesium cation, and combinations thereof. [0010]In some examples, the metal salt may include an anion selected from the group consisting of an acetylacetonate, 2-ethylhexanoate, phthalocyanine, fluoride, chloride, bromide, iodide, sulfide, nitrate, phosphate, carbonate, oxalate, formate, sulfate, triflate, bis(trifluoromethyl)sulfonimide, tetrafluoroborate, hexafluorophosphate, and combinations thereof. [0011]In some examples, the metal salt may include one or more of copper (II) acetylacetonate (Cu(O2C5H7)2), copper sulfate (CuSO4.5H2O), copper chloride, copper citrate, copper acetate, copper phosphate (Cu3(PO4)2), gold chloride (AuCl), gold bromide (AuBr), gold iodide (AuI), tetrabromoauric acid (HAuBr4), tetrachloroauric acid (HAuCl4), palladium sulfate, (PdSO4.7H2O), palladium chloride, palladium nitrate, palladium acetate, palladium 2,4-pentanedionate, or combinations thereof. [0012]In some examples, the composition may consist of the 3D printable material and the metal precursor. [0013]In some examples, the 3D printable material may consist of polylactic acid and the metal precursor may consist of copper (II) acetylacetonate (Cu(O2C5H7)2). [0014]In some examples, the additive manufacturing composition may be a 3D printable filament. [0015]In some examples, the additive manufacturing composition may be a 3D printable powder. [0016]In some examples, the additive manufacturing composition may be a 3D printable resin. [0017]In some examples, the metal precursor may include the metal particle. The metal particle may include one or more of copper particles, silver particles, gold particles, aluminum particles, magnesium particles, manganese particles, iron particles, nickel particles, zinc particles, tin particles, platinum particles, palladium particles, or combinations thereof. [0018]The present disclosure may provide a method for fabricating a conductive article. The method may include forming a first layer of an article on a substrate. The first layer may include any one or more of the additive manufacturing composition disclosed herein. For example, the first layer may include an additive manufacturing composition including a 3D printable material and a metal precursor disposed in the 3D printable material, where the metal precursor may include a metal salt, a metal particle, or combinations thereof. The method may also include forming a second layer of the article adjacent the first layer. The method may further include binding the first layer with the second layer to fabricate the article. The method may also include plating a metal on at least a portion of the article to fabricate the conductive article. [0019]In some examples, the method may further include activating the metal precursor of the additive manufacturing composition with a reducing agent. [0020]In some examples, plating the metal on at least a portion of the article may include an electroless plating process. [0021]In some examples, the electroless plating process may further include depositing metal on or about the activated metal precursors. [0022]In some examples, the second layer may include a water soluble polymer. [0023]In some examples, the second layer may include a 3D printable material substantially free of any metal precursors. [0024]In some examples, the method may further include generating a digital model of the article with a computer aided design assembly. The method may also include partitioning the digital model into at least a first digital cross-section and a second digital cross-section. Forming the first layer of the article on the substrate may include forming the first layer of the article on the substrate using the first digital cross-section as a first template. Forming the second layer of the article adjacent the first layer may include forming the second layer of the article adjacent the first layer using the second digital cross-section as a second template. [0025]In some examples, the conductive article may have or include a conductivity of at least 1E6 Siemens per meter (S/m). [0026]The present disclosure may provide a kit for additive manufacturing of a conductive article. The kit may include any one or more of the additive manufacturing compositions disclosed herein. The kit may also include an activation solution and a deposition solution. The activation solution may include a reducing agent configured to activate the metal precursor of the additive manufacturing composition. The deposition solution may be configured to deposit metal on or about the activated metal precursor.
具体实施方式:
[0032]The following description of various typical aspect(s) is merely exemplary in nature and is in no way intended to limit the disclosure, its application, or uses. [0033]As used throughout, ranges are used as shorthand for describing each and every value that is within the range. Any value within the range may be selected as the terminus of the range. In addition, all references cited herein are hereby incorporated by reference in their entireties. In the event of a conflict in a definition in the present disclosure and that of a cited reference, the present disclosure controls. [0034]Unless otherwise specified, all percentages and amounts expressed herein and elsewhere in the specification should be understood to refer to percentages by weight. The amounts given are based on the active weight of the material. [0035]Additionally, all numerical values are “about” or “approximately” the indicated value, and take into account experimental error and variations that would be expected by a person having ordinary skill in the art. It should be appreciated that all numerical values and ranges disclosed herein are approximate values and ranges, whether “about” is used in conjunction therewith. It should also be appreciated that the term “about,” as used herein, in conjunction with a numeral refers to a value that may be ±0.01% (inclusive), ±0.1% (inclusive), ±0.5% (inclusive), ±1% (inclusive) of that numeral, ±2% (inclusive) of that numeral, ±3% (inclusive) of that numeral, ±5% (inclusive) of that numeral, ±10% (inclusive) of that numeral, or ±15% (inclusive) of that numeral. It should further be appreciated that when a numerical range is disclosed herein, any numerical value falling within the range is also specifically disclosed. [0036]As used herein, the term “or” is an inclusive operator, and is equivalent to the term “and/or,” unless the context clearly dictates otherwise. The term “based on” is not exclusive and allows for being based on additional factors not described, unless the context clearly dictates otherwise. In the specification, the recitation of “at least one of A, B, and C,” includes embodiments containing A, B, or C, multiple examples of A, B, or C, or combinations of A/B, A/C, B/C, A/B/B/B/B/C, A/B/C, etc. In addition, throughout the specification, the meaning of “a,”“an,” and “the” include plural references. The meaning of “in” includes “in” and “on.” [0037]Reference will now be made in detail to exemplary embodiments of the present teachings, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same, similar, or like parts. Compositions [0038]Compositions disclosed herein may be or include compositions suitable for, capable of, or configured to be utilized in one or more additive manufacturing or three-dimensional (3D) printing processes. For example, the compositions disclosed herein may be 3D printable compositions suitable for, capable of, or configured to be utilized as a stock material or building material in the one or more additive manufacturing or 3D printing processes. As such, the 3D printable compositions disclosed herein may be utilized to fabricate at least a portion or one or more portions (e.g., layers) of a 3D printed article, such as a conductive or non-conductive 3D printed article, via the 3D printing processes. [0039]The compositions disclosed herein may include one or more metal precursors and one or more 3D printable materials. For example, the 3D printable compositions may be or include a composite material including a mixture or combination of the one or more metal precursors and the one or more 3D printable materials. The one or more metal precursors may be disposed, mixed, suspended, dispersed, dissolved, combined, or otherwise contacted with the one or more 3D printable materials of the 3D printable composition. [0040]The 3D printable composition may be in any shape, size, and/or form suitable for, capable of, or configured to be utilized in the one or more 3D printing processes. In at least one embodiment, the 3D printable composition may be provided as a filament, such as a filament fabricated via extrusion and/or spinning. In another embodiment, the 3D printable composition may be provided as particles, granules, powders, agglomerations, or the like. In yet another embodiment, the 3D printable composition may be provided as a solution or melt, such as a resin solution or melted polymer. [0041]In at least one embodiment, the 3D printable composition may be free or substantially free of any one or more volatile materials. Particularly, in at least one embodiment, the 3D printable composition may be free or substantially free or water, acetone, methylethylketone (MEK), cyclohexanone, methanol, ethanol, isopropanol, pentane, hexane, heptane, cyclohexane, chloroform, dichloromethane, benzene, toluene, xylene, chlorobenzene, dichlorobenzene, N-methylpyrrolidone (NMP), N,N-dimethylformamide (DMF), or other volatile solvents known to those skilled in the art, or the like, or combinations thereof. As used herein, “free” or “substantially free” of a material may refer to a composition, component, or phase where the material is present in an amount of less than 10.0 weight %, less than 5.0 weight %, less than 3.0 weight %, less than 1.0 weight %, less than 0.1 weight %, less than 0.05 weight %, less than 0.01 weight %, less than 0.005 weight %, or less than 0.0001 weight % based on a total weight of the composition, component, or phase. [0042]The 3D printable composition may be triggered or stimulated to change a phase thereof. For example, the 3D printable composition may be triggered or stimulated by an outside trigger or stimulus, respectively, to change the 3D printable composition from a solid phase to a liquid phase (e.g., melted polymer or melt or viscoelastic fluid) or from a liquid phase to a solid phase. In at least one embodiment, the 3D printable composition may directly change from a solid phase to a liquid phase, or may directly change from a liquid phase to a solid phase. Illustrative triggers or stimulus that may change the phase of the 3D printable composition may be or include, but are not limited to, temperature change (e.g., from a heat source), light irradiation, pressure change, or the like, or any combination thereof. [0043]The one or more metal precursors may be or include any material, substance, compound, and/or complex suitable for, capable of, or configured to be processed or treated to produce a metal and/or facilitate the deposition of a metal. For example, the one or more metal precursors may be or include any material, substance, compound, and/or complex that may aid, promote, or facilitate electroless metal deposition. As used herein, the term or expression “electroless metal deposition,”“electroless deposition,”“electroless plating,” or the like, may refer to a process where a metal (e.g., copper, gold, silver, aluminum, nickel, platinum, etc.) is deposited on a surface without using external electrical power. Illustrative metal precursors may be or include, but are not limited to, one or more metal particles (e.g., nano- and micro-particles), catalysts (e.g., metal catalysts), reducing agents, metal salts, metal compounds, metal complexes (e.g., inorganic and/or organic metal complexes), metal coordination complexes, or the like, or any combination thereof. [0044]In at least one embodiment, the one or more metal precursors may be or include a metal salt or a metal complex having one or more metal cations and one or more anions. Illustrative metal cations may be or include, but are not limited to, an alkaline earth metal, a transition metal, a post-transition metal, or any combination thereof. For example, the metal cation of the metal salt or metal complex may be or include, but is not limited to, a copper cation, a silver cation, a gold cation, an aluminum cation, a magnesium cation, a manganese cation, an iron cation, a nickel cation, a zinc cation, a tin cation, a platinum cation, a palladium cation, or the like, or any combination thereof. Illustrative anions of the metal salt or metal complex may be or include, but is not limited to, an acetylacetonate, 2-ethylhexanoate, phthalocyanine, fluoride, chloride, bromide, iodide, sulfide, nitrate, phosphate, carbonate, oxalate, formate, sulfate, triflate, bis(trifluoromethyl)sulfonimide, tetrafluoroborate, hexafluorophosphate, or the like, or any combination thereof. Illustrative metal salts or metal complexes may be or include, but are not limited to, copper (II) acetylacetonate (Cu(O2C5H7)2), copper sulfate (CuSO4.5H2O), copper chloride (CuCl or CuCl2), copper citrate, copper acetate, copper phosphate (Cu3(PO4)2), nickel sulfate, nickel chloride, nickel nitrate, silver nitrate, silver sulfate, silver chloride, gold chloride (AuCl), gold bromide (AuBr), gold iodide (AuI), tetrabromoauric acid (HAuBr4), tetrachloroauric acid (HAuCl4), palladium sulfate (PdSO4.7H2O), palladium chloride, palladium nitrate, palladium acetate, palladium 2,4-pentanedionate, tin chloride, platinum chloride, derivatives thereof, or the like, or any combination thereof. In at least one embodiment, the metal salt and/or metal complex may have a solubility in water of less than 5 g/L, less than 4 g/L, less than 3 g/L, less than 2 g/L, less than 1 g/L, less than 0.8 g/L, or less than 0.6 g/L. [0045]Illustrative metal particles may be or include, but are not limited to, copper particles, silver particles, gold particles, aluminum particles, magnesium particles, manganese particles, iron particles, nickel particles, zinc particles, tin particles, platinum particles, palladium particles, or the like, or any combination thereof. The metal particles may be or include nanoparticles having a diameter of from about 10 nm to about 100 nm. The metal particles may also be or include microparticles having a diameter greater than about 100 nm. The metal particles may be prepared separately and incorporated into the 3D printable composition. The metal particles may also be prepared or synthesized in situ. [0046]Illustrative catalysts for the one or more metal precursors maybe or include, but are not limited to, one or more metals (e.g., metal particles) capable of catalyzing or facilitating electroless plating. [0047]The one or more metal precursors may be present in the composition in an amount of from about 0.1 weight % to about 95 weight %, based on a total weight of the composition. For example, the one or more metal precursors may be present in the 3D printable composition in an amount of from greater than or equal to about 0.1 weight %, greater than or equal to about 0.5 weight %, greater than or equal to about 1 weight %, greater than or equal to about 5 weight %, greater than or equal to about 10 weight %, greater than or equal to about 20 weight %, greater than or equal to about 30 weight %, greater than or equal to about 40 weight %, or more. In another example, the one or more metal precursors may be present in the 3D printable composition in an amount of less than or equal to about 95 weight %, less than or equal to about 90 weight %, less than or equal to about 80 weight %, less than or equal to about 70 weight %, less than or equal to about 65 weight %, less than or equal to about 50 weight %, or less. [0048]The one or more 3D printable materials may be or include any material or substance suitable for, capable of, or configured to be utilized in the one or more 3D printing processes. The one or more 3D printable materials may also be or include any material or substance suitable for, capable of, or configured to contain the one or more metal precursors. For example, the one or more 3D printable materials are compatible with the one or more 3D printing processes and the one or more metal precursors. For example, the one or more 3D printable materials may react with or may not react with at least one of the metal precursors. In at least one embodiment, the 3D printable materials may be or include, but is not limited to, a thermoplastic polymer, a non-crosslinked polymer, a resin (e.g., a monomer resin, an oligomer resin, etc.), or the like, or any combination thereof. [0049]In at least one embodiment, the 3D printable material may include a polymer that swells by less than 10 wt % in an aqueous solution or an electroless plating bath. For example, the 3D printable material may be or include a polymer that swells by less than 10 wt %, less than 8 wt %, less than 7 wt %, less than 6 wt %, less than 5 wt %, less than 4 wt %, less than 3 wt %, or less than 2 wt % in an aqueous solution or an electroless plating bath. The 3D printable material may be water insoluble. [0050]Illustrative 3D printable materials may be or include, but are not limited to, acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), thermoplastic polyurethane (TPU), polystyrene (e.g., high impact polystyrene (HIPS)), polypropylene (PP), polyethylene (PE), ethylene vinyl acetate (EVA), thermoplastic polyolefin (TPO), rubber, nylon, polycaprolactone (PCL), polyethylene terephthalate (PET), polyethylene terephthalate glycol (PTG), polyamide, aromatic polyamide, polyether, polyester, polymethylmethacrylate (PMMA), polyurethane copolymers, ethylene vinyl alcohol, or the like, or any combination thereof. [0051]The one or more 3D printable materials may be present in the composition in an amount of from about 5 weight % to about 99.9 weight %, based on a total weight of the composition. For example, the one or more 3D printable materials may be present in the composition in an amount of from greater than or equal to about 5 weight %, greater than or equal to about 10 weight %, greater than or equal to about 15 weight %, greater than or equal to about 20 weight %, greater than or equal to about 25 weight %, greater than or equal to about 30 weight %, greater than or equal to about 35 weight %, greater than or equal to about 40 weight %, greater than or equal to about 45 weight %, greater than or equal to about 50 weight %, greater than or equal to about 55 weight %, greater than or equal to about 60 weight %, greater than or equal to about 65 weight %, greater than or equal to about 70 weight %, greater than or equal to about 75 weight %, or more, based on a total weight of the 3D printable composition. In another example, the one or more 3D printable materials may be present in the composition in an amount of less than or equal to about 99.9 weight %, less than or equal to about 95 weight %, less than or equal to about 90 weight %, less than or equal to about 85 weight %, less than or equal to about 80 weight %, less than or equal to about 75 weight %, less than or equal to about 70 weight %, less than or equal to about 65 weight %, less than or equal to about 60 weight %, less than or equal to about 55 weight %, less than or equal to about 50 weight %, less than or equal to about 40 weight %, less than or equal to about 30 weight %, less than or equal to about 20 weight %, or less, based on a total weight of the 3D printable composition. Methods [0052]Embodiments of the present disclosure may provide methods for preparing any one or more of the 3D printable compositions disclosed herein. For example, embodiments of the present disclosure may provide methods for preparing a 3D printable composition including one or more 3D printable materials having one or more metal precursors suspended, dissolved, mixed, or otherwise dispersed therein. The method may include combining, mixing, or otherwise contacting the one or more metal precursors, the one or more 3D printable materials, and one or more solvents with one another. The one or more metal precursors, the one or more 3D printable materials, and the one or more solvents may be contacted with one another to prepare a solution or mixture. The one or more metal precursors, the one or more 3D printable materials, and the one or more solvents may be mixed or rheologically mixed. In at least one embodiment, the one or more metal precursors may include copper (II) acetylacetonate and the one or more 3D printable materials may include polylactic acid (PLA). [0053]The solvent utilized for preparing the 3D printable composition may be a single solvent or a co-solvent system. In at least one embodiment, the one or more solvents include a co-solvent system including dichloromethane and acetone. It should be appreciated, however, that any suitable solvent capable of dissolving or solvating the 3D printable materials may be utilized. Further, any suitable solvent capable of dissolving, suspending, or dispersing the one or more metal precursors may be utilized. For example, the one or more solvents that may be utilized may be or include those having similar polar structures to the 3D printable materials. Illustrative solvents may be or include, but is not limited to, dimethylformamide, N-methyl-2-pyrrolidone, tetrahydrofuran, dichloromethane, acetone, fluorocarbon, dimethyl sulfoxide, or the like, or combinations thereof. [0054]The method for preparing the 3D printable composition may also include evaporating at least a portion of the one or more solvents from the solution or mixture to prepare the 3D printable composition including the one or more metal precursors and the one or more 3D printable materials. In at least one embodiment, the solution or mixture may be cast on a substrate before evaporating at least a portion of the one or more solvents from the solution or mixture to prepare a sheet or film of the 3D printable composition. In at least one embodiment, the method may further include homogenizing the composite 3D printable composition. Homogenizing the 3D printable composition may include applying heat and/or compression to the 3D printable composition. It should be appreciated that the heat may soften or melt the one or more polymers of the 3D printable composition. It should further be appreciated that compression of the 3D printable composition may generate shear to break aggregations of the metal precursor and facilitate or aid in the dispersion of the metal precursor in the one or more polymers. [0055]The method for preparing the 3D printable composition may include one or more shaping and/or sizing processes. For example, the method for preparing the 3D printable composition may include shaping and/or sizing the 3D printable composition for one or more 3D printing processes. For example, the 3D printable composition may be milled, granulated, ground, cut, or the like, or any combination thereof to prepare particles, granules, powders, and/or agglomerations of the 3D printable composition for one or more 3D printing processes (e.g., powder bed 3D printing). In another embodiment, the 3D printable composition may be extruded or spun to prepare filaments or strands of the 3D printable composition for one or more 3D printing processes (e.g., fused deposition modeling). [0056]Methods disclosed herein may include fabricating a 3D printed article from the 3D printable compositions disclosed herein. For example, the 3D printable compositions disclosed herein may be utilized in any one or more 3D printing processes to fabricate the 3D printed article (e.g., a nonconductive 3D printed article). Illustrative 3D printing processes may be or include, but are not limited to, an extrusion-based 3D printing process or material extrusion, vat polymerization, powder bed fusion, material jetting, binder jetting, or the like. Illustrative extrusion-based 3D printing processes may be or include, but are not limited to, fused deposition modeling (FDM), melted extrusion manufacturing (MEM), fused filament fabrication (FFF), selective deposition modeling (SDM), or the like, or combinations thereof. Illustrative vat polymerization 3D printing processes may be or include, but are not limited to, stereolithography (SL), direct light processing (DLP), or the like, or combinations thereof. Illustrative powder bed fusion 3D printing processes may be or include, but are not limited to, selective laser sintering (SLS), or the like. Illustrative material jetting 3D printing processes may be or include, but are not limited to, material jetting (MJ), drop on demand (DOD), or the like, or combinations thereof. [0057]FIG. 1 illustrates a schematic of an exemplary system 100 for fabricating an article 102 (e.g., a nonconductive 3D printed article) from the one or more 3D printable compositions disclosed herein via the 3D printing processes, according to one or more embodiments. The system 100 may include a computer aided design (CAD) assembly 104 and a layering device 106. The CAD assembly 104 may include any software capable of providing or generating a geometry or digital model 108 of the article 102 in three dimensions (3D). As further described herein, the layering device 106 may utilize the digital model 108 as a template or guide to fabricate the article 102 in a layer-by-layer manner. The layering device 106 may be or include any device (e.g., 3D printer) capable of fabricating the article 102 using the digital model 108 as a template. [0058]The CAD assembly 104 may include at least one computer 110 having a memory 112 (e.g., hard drives, random access memory, flash memory, etc.), one or more central processing units (one is shown 114), one or more input devices (e.g., keyboard and mouse) (not shown), one or more monitors 116 on which a software application may be executed, or any combination thereof. The memory 112 may store an operating system and/or any programs or software capable of providing or generating the digital model 108. The central processing unit 114 may work in concert with the memory 112 and/or the input devices (not shown) to perform tasks for a user or operator. The central processing unit 114 may be automated or may execute commands at the direction of the user. The computer 110 may interface with one or more databases, support computers or processors, the Internet, or any combination thereof. It may be appreciated that the term “interface” may refer to all possible internal and/or external interfaces, wired or wireless. While FIG. 1 illustrates the computer 110 as a platform on which the methods discussed and described herein may be performed, the methods may also be performed on any other platform or device having computing capabilities. For example, the layering device 106 may include a platform or device capable of generating the digital model 108, such that a separate computer 110 may not be necessary. [0059]The digital model 108 may include information or data defining one or more portions of the article 102. For example, the digital model 108 may include 3D numerical coordinates of an entire geometry of the article 102. The digital model 108 may define an inner surface, an outer surface, and/or a volume of the article 102 to be fabricated by the layering device 106. The digital model 108 may be communicated to the layering device 106, as illustrated by arrow 118, and may provide the template to fabricate the article 102. [0060]The layering device 106 may fabricate the article 102 from the digital model 108 in one or more processes (two are shown 120, 122). A first process 120 for fabricating the article 102 from the digital model 108 may be or include a digital process. The digital process 120 may include dividing or partitioning the digital model 108 into two or more digital layers or digital cross-sections (two are shown 124, 126) using one or more digital horizontal planes (one is shown 128). For example, as illustrated in FIG. 1, the digital process 120 may include partitioning the digital model 108 into successive digital cross-sections 124, 126, which may be two dimensional (2D) or 3D. It may be appreciated that the layering device 106 may divide or partition the digital model 108 into any number of digital cross-sections 124, 126 using any number of digital horizontal planes 128. It should further be appreciated that each digital cross-section 124, 126 may also be divided or partitioned into two or more sublayers and/or sections. Each of the digital cross-sections 124, 126 may provide a template to fabricate at least a portion of the article 102. For example, as illustrated in FIG. 1, each of the digital cross-sections 124, 126 may provide a template to fabricate each of the layers 130, 132 of the article 102 in a second process 122. The digital cross-sections 124, 126 may include data defining the respective layers 130, 132 of the article 102. For example, a first digital cross-section 124 may include data defining a first layer 130 of the article 102, and a second digital cross-section 126 may include data defining a second layer 132 of the article 102. Each of the digital cross-sections 124, 126 may include data defining an outer cross-sectional line, an inner cross-sectional line, a cross-sectional area, a volume, or any combination thereof. The respective inner and outer cross-sectional lines of each of the digital cross-sections 124, 126 may define respective inner and outer surfaces of each of the layers 130, 132 of the article 102. Further, the respective cross-sectional area of each of the digital cross-sections 124, 126 may at least partially define a respective volume of each of the layers 130, 132. [0061]As previously discussed, the layering device 106 may fabricate the article 102 from the digital model 108 in one or more processes 120, 122, and the digital process 120 may include partitioning the digital model 108 into the digital cross-sections 124, 126. The second process 122 for fabricating the article 102 from the digital model 108 may include fabricating each of the layers 130, 132 of the article 102 from a stock or building material, such as the 3D printable composition disclosed herein. For example, the second process 122 may include sequentially forming each of the layers 130, 132 of the article 102 using the respective digital cross-sections 124, 126 as a template. The second process 122 may also include binding the layers 130, 132 with one another to build or form the article 102. Any number of layers 130, 132 may be formed and/or bound with one another to form the article 102. [0062]In an exemplary operation, illustrated in FIG. 1, the layering device 106 may fabricate the article 102 by forming the first layer 130, forming the second layer 132, and combining or binding the first and second layers 130, 132 with one another. The first layer 130 may be formed on a substrate (not shown) configured to support the first layer 130 and/or any subsequent layers. Any one or more of the layers 130, 132 formed by the layering device 106 may provide or be a substrate for any subsequent layers deposited by the layering device 106. For example, the first layer 130 deposited by the layering device 106 may be or provide the substrate for the second layer 132 or any subsequent layers. In at least one embodiment, the formation of the second layer 132 and the binding of the second layer 132 to the first layer 130 may occur simultaneously. For example, the process of forming the second layer 132 may at least partially bind the second layer 132 to the first layer 130. In another embodiment, the formation of the second layer 132 and the binding of the second layer 132 with the first layer 130 may occur sequentially. For example, the second layer 132 may be formed adjacent or atop the first layer 130 in one process, and the second layer 132 may be bound, fused, or otherwise coupled with the first layer 130 in a subsequent process (e.g., a heating process). The layering device 106 may bind or fuse the first layer 130, the second layer 132, and/or any subsequent layers (not shown) with one another to fabricate the article 102. [0063]FIG. 2 illustrates an exemplary layering device 200 that may be utilized in the system 100 of FIG. 1, according to one or more embodiments. The layering device 200 may be capable of or configured to form and/or bind the layers 130, 132 (see FIG. 1) with one another to form the article 102. The layering device 200 may also be capable of or configured to carry out or perform a powder bed fusion 3D printing process, such as selective laser sintering (SLS), or the like, and/or a modification thereof. As illustrated in FIG. 2, the layering device 200 may include a fabrication assembly 202, one or more powder assemblies (one is shown 204), a scanner 206, a heat source 208, such as a laser, or any combination thereof. [0064]As illustrated in FIG. 2, the fabrication assembly 202 may include a feedstock or powder container 210 configured to contain a build material 220 (e.g., the 3D printable composition in a powdered or granulated form) and having a component support 212 disposed therein. The component support 212 may be configured to carry or hold the article 102 during one or more fabrication processes of the layering device 200. The component support 212 may be adjustable or movable within the build container 210 in a vertical direction (e.g., z-axis) and may be movable to define a working volume 214 (shown in phantom) of the layering device 200. [0065]The powder assembly 204 may include a powder chamber 216 having a delivery support 218 configured to support the 3D printable composition 220. The delivery support 218 may be adjustable or movable within the powder chamber 216 in the vertical direction (e.g., z-axis). The powder assembly 204 may also include a roller or wiper 222 configured to transfer at least a portion of the build material or 3D printable composition 220 from the powder assembly 204 to the fabrication assembly 202. While FIG. 2 illustrates a single powder assembly 204, it should be appreciated that the layering device 200 may include a plurality of powder assemblies. For example, the layering device 200 may include a first powder assembly capable of or configured to contain and deliver the 3D printable material to the fabrication assembly, and a second powder assembly capable of or configured to contain and deliver the metal precursors or another 3D printable material to the fabrication assembly. In another example, the layering device 200 may include a first powder assembly capable of or configured to contain and deliver the 3D printable composition including the 3D printable material and the metal precursor to the fabrication assembly, and a second powder assembly capable of or configured to contain and deliver a 3D printable material without the metal precursors to the fabrication assembly. [0066]In at least one embodiment, the scanner 206 may focus or direct an energy beam or any heat source, illustrated by arrows 226, along the working volume 214 to fuse the 3D printable composition 220 contained in the working volume 214 with one another to form the layers 130, 132 of the article 102. In another embodiment, the laser 208 or another heat source may be translated or moved along an x-axis and/or a y-axis to direct the energy beam 226 thereof along the working volume 214. For example, the laser 208 may be mounted with a movable platform or frame (not shown) configured to translate the laser 208 along the x-axis and/or the y-axis. [0067]In an exemplary operation of the layering device 200 with continued reference to FIG. 2, the delivery support 218 may be raised in the vertical direction to supply a portion of the 3D printable composition 220 disposed in the powder chamber 216 to the wiper 222, and the component support 212 may be lowered to provide an empty volume (i.e., the working volume 214) in the build container 210. The wiper 222 may spread or otherwise push the portion of the 3D printable composition 220 from the powder assembly 204 to the empty volume in the build container 210 to thereby form the working volume 214 of the 3D printable composition 220 in the fabrication assembly 202. The laser 208, the scanner 206, and/or another heat source may emit or otherwise focus the energy beam 226 onto the 3D printable composition 220 contained in the working volume 214 to selectively melt, sinter, or otherwise fuse at least a portion of the powdered 3D printable composition 220 with one another to form the first layer 130 of the article 102. For example, the energy beam 226 may selectively melt or fuse the powdered 3D printable composition 220 into larger structures or agglomerations (e.g., molten materials) by rapidly melting the powdered 3D printable composition 220. As the energy beam 226 moves along the working volume 214 to melt or fuse the powdered 3D printable composition 220,
返回