具体实施方式:
DETAILED SPECIFICATION
[0032]In the Summary above, the Detailed Description, the claims below, and in the accompanying drawings, reference is made to particular features (including method steps) of the present invention. It is to be understood that the disclosure of the invention in this specification includes all possible combinations of such particular features. For example, where a particular feature is disclosed in the context of a particular aspect or embodiment of the invention, or a particular claim, that feature can also be used, to the extent possible, in combination with and/or in the context of other particular aspects and embodiments of the invention, and in the invention generally.
[0033]In accordance with embodiments of the present invention, a lighting apparatus may include a housing having a cavity and comprising a top body shell and a bottom body shell, a lighting module assembly, an adjustable arc assembly, and a lighting driver assembly. In some examples, the device may include a heat sink assembly, a turntable component, one or more arm mounts, a mud plate and/or a trim assembly. In any embodiment, the lighting apparatus may include more or fewer components. One of ordinary skill in the art would appreciate that there are numerous configurations or number of components that might be used to form the device, and embodiments of the present invention are contemplated for use with any such configuration or number of components.
[0034]In accordance with embodiments of the present invention, the lighting system of the present disclosure may be configured for use in both residential and commercial settings. For example, the lighting system may be used in office spaces, elevator vestibules, vestibules in hotels or other hospitality locations, apartments, houses, development projects and art galleries.
[0035]In accordance with embodiments of the present invention, the lighting system, for example, the downlight system of the present disclosure, may be disposed in a compact housing. For example, the housing may be 3.5 inches or less in depth, 9.31 or less inches in length, and 12.39 inches in width. One of ordinary skill in the art would appreciate that there are numerous sizes or dimensions that might be used to form the housing of the lighting system, all without departing from the spirit and scope of the present invention.
[0036]In accordance with embodiments of the present invention, the bottom body shell may include an aperture or opening. The aperture or opening may be configured to allow light, for example, light emitted from an LED module, to pass outwards from inside the housing of the lighting system. In some examples, the aperture may be circular, however, the aperture may be formed in any suitable shape, for example, square, rectangular or hexagonal. In some scenarios, the aperture may have a diameter 4 inches in length. In some embodiments, the diameter of the aperture may be smaller, for example, the aperture may be 3.5 inches in length. One of ordinary skill in the art would appreciate that there are numerous shapes and sizes that might be used to form aperture of the lighting system, and embodiments of the present invention are contemplated for use with any such aperture shape or size.
[0037]In accordance with embodiments of the present invention, an exemplary adjustable arc assembly of the lighting system may be configured to permit the direction, position or angle of light emitted from a lighting module, for example, an LED module, connected to the arc component of the adjustable arc assembly to be adjusted along a dual axis before, during, or after installation of the lighting system. For example, the lighting module may be tilted 90 degrees along the arc component, or 45 degrees in at least two directions. Moreover, in some embodiments, the adjustable arc assembly may be configured to permit 360 degree rotation of a lighting module, for example, an LED module, connected to the arc component of the adjustable arc assembly. In some examples, the adjustable arc assembly may be configured to move the lighting module in 3-5 degree increments.
[0038]In accordance with embodiments of the present invention, adjustment of the adjustable arc assembly may be made manually, for example, by use of a user's hand, or automatically, for example, by use of an automated system. In some examples, the automated system may comprise a transmitter connected to the lighting system or lighting module via a communications means, for example, BlueTooth® technology, to enable remote monitoring or adjustment of the adjustable arc assembly, for example, to permit a user to adjust or change the degree of tilt or angle of the adjustable arc or the lighting module. In some scenarios, remote devices, for example, smartphones, tablets, or computers may be utilized to communicate with such a transmitter.
[0039]In accordance with embodiments of the present invention, the communications means of the system may be any means for communicating data, including image and video, over one or more networks or to one or more peripheral devices attached to the system, or to a system module or component. Appropriate communications means may include, but are not limited to, wireless connections, wired connections, cellular connections, data port connections, Bluetooth® connections, near field communications (NFC) connections, or any combination thereof. One of ordinary skill in the art will appreciate that there are numerous communications means that may be utilized with embodiments of the present disclosure, and embodiments of the present disclosure are contemplated for use with any such communications means.
[0040]In accordance with embodiments of the present invention, an exemplary adjustable arc assembly of the lighting system may provide for infinite and tool free hot-aiming adjustability. In some examples, the adjustable arc may keep the lighting module, for example, the LED module centered on the housing aperture to permit a user to effortlessly fine tune the lighting experience.
[0041]In accordance with embodiments of the present invention, the lighting system may be compatible with a variety of trims. For example, the lighting system may be compatible with round, radius, square and snoot trim shapes. In any embodiment, the lighting system may be compatible with any sized or shaped trim. In some scenarios, the trims may be field changeable, for example, the trims may be easily changed even after installation of the lighting system. One of ordinary skill in the art would appreciate that there are numerous configurations or shapes that might be used to form trims of the lighting system, and embodiments of the present invention are contemplated for use with any such configuration or shape.
[0042]In accordance with embodiments of the present invention, the trims of the lighting system may be any size. In an exemplary embodiment, the size of a trim may be four inches. One of ordinary skill in the art would appreciate that there are numerous sizes that might be used to form trims of the lighting system, and embodiments of the present invention are contemplated for use with any such trim size.
[0043]In accordance with embodiments of the present invention, the lighting system may be compatible with a variety of lenses. In an exemplary embodiment, the lighting system is compatible with a solite lens. One of ordinary skill in the art would appreciate that there are numerous lenses that might be used with the lighting system, and embodiments of the present invention are contemplated for use with any such lens.
[0044]In accordance with embodiments of the present invention, the lighting system may include a light module, for example, an LED module, that is non-heat based.
[0045]In accordance with embodiments of the present invention, the lighting system may be designed in a variety of appearances. For example, the lighting system may be designed to have a flangeless, flanged, wood ceiling, or shower appearance. One of ordinary skill in the art would appreciate that there are numerous appearance designs for the lighting system, and embodiments of the present invention are contemplated for use with any such appearance design.
[0046]In accordance with embodiments of the present invention, the lighting system may include one of a variety of beam spreads. For example, the beam spread of the lighting system may be a 15 degree pin point beam spread, a 24 degree narrow beam spread, a 36 degree standard beam spread, or a 60 degree flood beam spread. One of ordinary skill in the art would appreciate that there are numerous beam spreads that may be utilized for the lighting system, and embodiments of the present invention are contemplated for use with any such beam spread.
[0047]In accordance with embodiments of the present invention, the lighting system of the present disclosure may be configured to accommodate a mudplate. In some examples, the mudplate may be 0.06 inches thick. In some embodiments, the thickness of the mudplate may assist users in easily and efficiently installing the lighting system housing, in that less mud compound is needed for installation. One of ordinary skill in the art would appreciate that there are numerous mudplate configurations and thicknesses, and embodiments of the present invention are contemplated for use with any such mudplate configuration or thickness.
[0048]In accordance with embodiments of the present invention, the lighting module, for example, an LED lighting module may be configured with a variety of color options. For example, an LED lighting module configured for use with the lighting system of the present disclosure may be set to constant color, dim to warm, circadian rhythm, or tunable color. In some scenarios, the LED lighting module may utilize releasable fasteners, for example, releasable pins which enable the optic options of the LED module to be interchangeable, even after installation. In any embodiment, the releasable fasteners may be any similarly suitable releasable fasters, for example, clips, screws or rivets.
[0049]Turning now to the figures, FIG. 1 shows a perspective view of an exemplary lighting assembly in accordance with embodiments of the present invention. As shown in FIG. 1, the lighting system 100 of the present disclosure may include a housing 102, a lighting driver assembly 116, bottom body shell aperture 105, a mudplate 122, one or more arm mounts 122, and one or more securing members 121.
[0050]FIG. 2 shows a bottom view of an exemplary lighting assembly in accordance with embodiments of the present invention. As shown in FIG. 2, the lighting system 100 may comprise a housing 102 connected to one or more arm mounts 120 by one or more securing members 121. In some embodiments, the housing 102 includes an aperture 105 which extends towards an inner cavity, within which one or more components of the lighting system 100 may be disposed. In the depicted example, a mudplate 122 extends from and is operably connected to aperture 105. In some embodiments, one or more screw-type fasteners 123 may be utilized to secure the arm mounts 120 to a support structure, for example, a wall or ceiling. In any embodiment, any similarly suitable fasteners may be utilized to secure the arm mounts 120 to a support structure.
[0051]FIG. 3 shows a side view of an exemplary lighting assembly in accordance with embodiments of the present invention. As shown in FIG. 3, in some embodiments, a lighting driver assembly 116 may be configured to connect to the housing 102 of the lighting system 100. As shown in the depicted example, the arm mounts 120 may be configured to mount either or both of the housing 102 and the lighting driver assembly 116. Moreover, as shown in FIG. 3, the mudplate 122 may extend from the aperture (not shown) of the housing 102.
[0052]FIG. 4 shows a second side view of an exemplary lighting assembly in accordance with embodiments of the present invention. As shown in the depicted example, arm mounts 120 may be configured to mount the housing 102 of the lighting system 100. Furthermore, one or more screw-type fasteners 123 may be utilized to connect the arm mounts 120 to a support structure. Moreover, as shown in FIG. 3, the mudplate 122 may extend from the aperture (not shown) of the housing 102.
[0053]FIG. 5 shows a perspective view of an exemplary adjustable arc assembly in accordance with embodiments of the present invention. As shown in FIG. 5, the adjustable arc assembly 110 may comprise an arc component 108 operably connected to a turntable component 117. In some embodiments, the arc component 108 is formed of aluminum. In any embodiment, the arc component 108 may be formed of any other similarly suitable metal material. In the depicted example, arc platforms 109a and 109b extending from the arc component 108 are configured to slidably engage with the turntable component 117 to permit rotation of the arc component 108 about the turntable component 117. In some examples, screw-type fasteners 115 may connect the arc platforms 109a and 109b to the arc component 108. As further shown in FIG. 5, a lighting module assembly 112 may be operably connected to the arc component 108. The lighting module assembly may include an optic holder 168. The angle and position of the optic holder 168 may be adjusted to direct the light at different angles.
[0054]FIG. 6 shows a side view of an exemplary adjustable arc assembly in accordance with embodiments of the present invention. As shown in FIG. 6, the lighting module assembly 112 may be operably connected to the arc component 108 so that the lighting module assembly 112 can be positioned at different positions along the arc component 108 to adjust the position of the lighting module assembly 112 and the light coming from the lighting module assembly 112. In some embodiments, the lighting module assembly may be configured to slidably engage with the arc component 108. In some embodiments, the arc platforms 109a and 109b are configured to slidably engage with the turntable component 117. In some embodiments, one or more rotation locking elements may be utilized to selectively lock the arc component 108 along the turntable component 117 in a user selected position. As shown in the depicted example, in some scenarios, the locking elements are cam locks 113 adapted to engage with cam handles 111.
[0055]FIG. 7 shows an exploded view of an exemplary lighting assembly in accordance with embodiments of the present invention. As shown in FIG. 7, the lighting system 100 of the present disclosure may include a housing 102 comprising cavity 103 and a top body shell 104 opposing a bottom body shell 106. In some embodiments, the housing 102 may be configured to receive a lighting driver assembly 116, a heat sink assembly 151, a lighting module assembly 112 and an adjustable arc assembly 110. In some examples, the housing may include a removable housing cover. In some embodiments, the lighting system 100 may include one or more arm mounts 120. In some examples, the lighting system 100 includes a mudplate 122 and a trim 125.
[0056]FIG. 8 shows an exploded view of an exemplary heat sink assembly in accordance with an embodiment of the present invention. As shown in FIG. 8, the heat sink assembly 151 may comprise a top plate 157, one or more pin connections 152, one or more pin holders 153, one or more ball catches 154, one or more screw-type fasteners 155, a power cable holder 156, and a heat sink 150. In some embodiments, one or more of the heat sink components may be interchangeable. In some scenarios, one or more of the heat sink components fasten directly to the heat sink 150. For example, one or more of the heat sink components may fasten to the heat sink 150 via tapped and threaded fasteners, for example, tapped and threaded studs, and pin connections 152. In some examples, the tapped and threaded fasteners, the pin connections 152, or both, may provide easy connection of the heat sink assembly 151 to the lighting module assembly 112. For example, the tapped and threaded fasteners, the pin connections 152, or both, may provide easy “plug and play” connection capabilities for releasable connection of the heat sink assembly 151 to the lighting module assembly 112, for example, to swap color temperature and optic beam spread in a tool-free manner, which may be achievable in the field with hot-aiming. The heat sink 150 may be configured as a passive heat exchanger that transfers the heat generated by an electronic or a mechanical device to a fluid medium, for example, air or a liquid coolant, such that the heat is dissipated away from the lighting system 100, thereby allowing regulation of the system's temperature. In some embodiments, the heat sink assembly 151 may be configured to come in direct or indirect contact with the arc component 108. In some scenarios, direct contact between the heat sink assembly 151 and the arc component 108 permits the arc component 108, which may be formed of aluminum metal, to act in concert with the heat sink assembly 151 to assist in the heat dissipation process. In some examples, the configuration of the heat sink assembly 151 permits the heat sink assembly 151 to be shallow, for example, shallower than heat sinks presently known in the art, which in turn permits the housing 102 to be shallow, for example, shallower than downlight housings presently known in the art. As shown in the illustrated example, the heat sink assembly 151 may be configured to have a rectilinear orientation. Moreover, the heat sink assembly 151 may comprise a plurality of straight fins, wherein one or more ducts oriented lengthwise optimize the depth of the heat sink assembly 151. In some embodiments, the orientation of the straight fins maximizes the surface area and air flow volume of the heat sink assembly 151. Thus, as shown in the depicted example, the heat sink assembly 151 may be configured to be short and wide, when compared to traditional heat sinks. In some embodiments, the heat sink assembly 151 may draw heat outward or downward, for example, towards the bottom body shell of the heat sink, as opposed to upwards, which may further permit the heat sink assembly 151 and housing 102 to be relatively shallow, for example, shallower, than the downlight heat sinks and housings presently known in the art, as the heat sink assembly 151 would not require open space above the heat sink 150 to dissipate heat. Instead, the heat may be drawn outward or downward, with assistance from the arc component 108, towards the open space in the housing 102, for example, the cavity 103 or the bottom body shell aperture 105. Moreover, in some embodiments, the heat sink assembly 151 may be configured to draw heat away from the lighting module assembly 112 and into open air space inside the length of the housing, which may create a convection cooling effect. In any embodiment, the heat sink assembly 151 may include more or fewer components. One of ordinary skill in the art would appreciate that there are numerous configurations or number of components that might be used to form the heat sink, and embodiments of the present invention are contemplated for use with any such configuration or number of components.
[0057]FIG. 9 shows an exploded view of an exemplary lighting module assembly in accordance with embodiments of the present invention. In some embodiments, the lighting module assembly 112 is configured as an LED module assembly. The lighting module 112 may be configured to engage with or connect to the adjustable arc assembly 110. As shown in FIG. 9, the lighting module assembly 112 may comprise a lighting module base 161, a ring component 162, one or more screws 163, one or more releasable fasteners, for example, releasable pin connectors 164, a lighting diode or chip 165, for example, an LED chip, a chip holder 166, an optic lens 167, an optic holder 168, and a lighting module holder 169. In any embodiment, the screws 163 may be replaced with any similarly suitable fasteners, for example, bolts, rivets or pins. In some embodiments, the lighting module assembly 112 may include a quick connect system for power cables that can be quickly and/or easily deployed. For example, the lighting module assembly 112 may utilize “plug and play” connectors which may permit users to separate the lighting module driver from the light source quickly and/or easily. In some embodiments, the lighting chip 165 may be mounted to metal plates, for example, flat aluminum plates, which may be configured to sandwich the arc component 108 and permit the movement of the lighting module 112 along the arc component 108, for example, 45 degrees from the center of the arc component 108 in either direction. In some embodiments, the lighting module 112 may be configured to engage with a position stabilizer configured to couple the lighting module 112 to the arc component 108, for example, by means of compression coupling. In such embodiments, the position stabilizer may be configured to lock the lighting module 112 along the arc component 108 in a range of user selected positions. In any embodiment, the lighting module assembly 112 may include more or fewer components. One of ordinary skill in the art would appreciate that there are numerous configurations or number of components that might be used to form the lighting module assembly, and embodiments of the present invention are contemplated for use with any such configuration or number of components.
[0058]FIG. 10 shows an exploded view of an exemplary adjustable arc assembly in accordance with embodiments of the present invention. As shown in FIG. 10, the adjustable arc assembly 110 may comprise an arc component 108, one or more arc platforms 109, one or more cam locks 113, one or more cam handles 111, one or more screws 115, and an arc base component 114. In any embodiment, the screws 115 may be replaced with any similarly suitable fasteners, for example, bolts, rivets or pins. In some embodiments, for example, as shown in the depicted example, the arc platforms 109 may connect to the bottom edges of arc component 108. In some embodiments, the platforms 109 may be integrally formed with the arc component 108. In the illustrated example, the adjustable arc assembly 110 comprises a first arc platform 109a and a second arc platform 109b. In some embodiments, the arc component 108 is configured in a substantially concave or semi-circular structure or configuration. In some embodiments, the arc base component 114 is circular or round. In some embodiments, the arc component 108 is configured to operably connect to the turntable component 117. In some embodiments, the arc component 108 is configured to rotate 360 degrees relative to the housing 102. For example, the arc component 108 may rotate 360 degrees, in 1, 5, or 10 or more degree increments, relative to the housing 102. In some scenarios, the arc component 108 connects to the turntable component 117 in a manner that permits the arc component 108 to rotate 360 degrees along or about the turntable component 117. For example, the arc platforms 109a and 109b operably connected to or extending from the arc component 108 may be configured to engage with the outer surface or circumference of the turntable component 117 to permit the rotation of the arc component 108 along the turntable component 117 such that the arc component 108 is able to rotate about a vertical axis of the housing 102. In some examples, the arc base component 114 is configured to stabilize or balance the position of the arc component 108. In some embodiments, one or more rotation locking elements may be utilized to selectively lock the arc component 108 along the turntable component 117 in a user selected position. In some scenarios, the locking elements are cam locks 113 adapted to engage with cam handles 111. One of ordinary skill in the art would appreciate that there are numerous configurations or number of components that might be used to form the adjustable arc assembly, and embodiments of the present invention are contemplated for use with any such configuration or number of components.
[0059]FIG. 11 shows an exploded view of a lighting system housing in accordance with an embodiment of the present invention. As shown in FIG. 11, the lighting system housing 102 may comprise a top body shell 104 opposing a bottom body shell 106. In some embodiments, the housing may include a cavity 103 configured to house one or more lighting components. In the depicted example, a turntable component 117 is configured to operably connect to the bottom body shell 106 at the bottom body shell aperture 105. In some embodiments, the housing 102 may operably connect to one or more arm mounts 120. In some embodiments, one or more securing members 121, for example, brackets, may be used to fasten the arm mounts 120 to the housing 102. The arm mounts 120 may be configured to mount the housing 102 to a support structure, for example, a wall or ceiling. In some examples, one or more screw-type fasteners 123 or any other similarly suitable fasteners may be used to mount the arm mounts 120 to a support structure. The arm mounts 120 may be adjustable, for example, the arm mounts 120 may comprise telescoping components configured to permit adjustment of the length of the arm mounts 120. In the depicted example, two arm mounts 120 are shown for mounting the housing 102 to a support structure.
[0060]FIG. 12 shows an exploded view of an exemplary trim assembly in accordance with embodiments of the present invention. As shown in FIG. 6, a trim assembly may include a mudplate 122, a trim adapter 124a, a ceiling adapter 124b, and a trim 125. As shown in the depicted example, the trim assembly may be configured to connect to the housing 102 of the lighting system 100.
[0061]As shown in FIGS. 13a-13c, the lighting system 100 of the present disclosure may be compatible with trims of various shapes and sizes. For example, circular trims 125a (as shown in FIG. 13a), square trims with round edges 125b (as shown in FIG. 13b), and square trims with pointed edges 125c (as shown in FIG. 13c). As shown in FIGS. 13a-13c, clips 135 and fastening pins 136 may be used to secure the trims 125 to the housing 102. In any embodiment, any similarly suitable fasteners may be used to secure the trims 125 to the housing 102.
[0062]FIG. 14 shows a cross-sectional of an exemplary lighting assembly in accordance with embodiments of the present invention. As shown in FIG. 14, the arc component 108 may be disposed within the cavity of the lighting system housing 102 and the lighting module 112 may be adjustably connected to the arc component 108. As shown in the illustrated example, the lighting system 100 may be installed within a support structure, for example, a ceiling C through the use of wall mounts 120. As shown in the depicted example, in some embodiments, the lighting driver assembly 116 may connect to the lighting system housing 102. In some examples, the arc component 108, and the lighting module assembly 112 disposed thereon may be configured to rotate about the turntable component 117 on a vertical axis relative to the lighting system housing 102. In some embodiments, one or more rotation locking elements may be utilized to selectively lock the arc component 108 along the turntable component 117 in a user selected position. As shown in the depicted example, in some scenarios, the locking elements are cam locks 113 adapted to engage with cam handles 111.
[0063]In accordance with an exemplary usage scenario, the lighting module holder 169 within the housing 102 may be removed, for example, unscrewed, such that the lighting module 112 may be placed (or replaced). The lighting system 100 may then be installed by connecting the lighting system housing 102 to one or more arm mounts 120. In some examples, the arm mounts 120 may be utilized to mount the housing 102 to a support structure, for example, one or more ceiling joists disposed in a ceiling. The housing cover 121 may be removed, for example, by releasing fasteners, for example, clips disposed on the housing cover 121. Next, conduit or Romex wires may be connected through a knockout in the housing 102 using appropriate connectors, for example, connectors of the appropriate wire and conduit size. The housing cover 121 may be shut or closed using the fasteners (e.g. clips) once the wire connections are secured. Next, at the option of a user, drywall may be installed around the housing 102 of the lighting system 100.
[0064]FIG. 15 shows a cross-sectional of an exemplary lighting assembly, demonstrating use of the device, in accordance with embodiments of the present invention. In accordance with an exemplary usage scenario, the adjustable arc assembly 110 may be adjusted by a user. For example, a user's hand may be used to manually tilt the lighting module 112 disposed on the arc component 108 of the arc assembly 110, and/or to rotate the arc component 108 along the turntable component 117. The light emitted from the lighting assembly 100 may thus be oriented to a user's desired angle, direction, position or location. In some scenarios, the user-selected lighting angle may reduce glare. At the option of the user, the adjustment arc assembly 110 may be locked into a particular rotated position using the cam locks 113 and cam handles 111 disposed on the arc platforms 109a and 109b. In some scenarios, the lighting module 112 may then be tilted along the arc component 108 to a degree and locked in place, as desired by a user.
[0065]In some scenarios, a mudplate 122 may be installed over the aperture or opening 105 of the housing 102, for example, by inserting the mudplate 122 into the turntable component 117. A dust cover, for example, a clear plastic dust cover, may then be inserted into the mudplate 122 opening. A user may then finish the ceiling to a desired effect and may remove the dust cover in order to install a desired trim 125 into the mudplate opening 122.
[0066]While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from this detailed description. The invention is capable of myriad modifications in various obvious aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and descriptions are to be regarded as illustrative in nature and not restrictive.
[0067]It should be noted that the features illustrated in the drawings are not necessarily drawn to scale, and features of one embodiment may be employed with other embodiments as the skilled artisan would recognize, even if not explicitly stated herein. Descriptions of well-known components and processing techniques may be omitted so as to not unnecessarily obscure the embodiments.
[0068]In the present disclosure, various features may be described as being optional, for example, through the use of the verb “may;”, or, through the use of any of the phrases: “in some embodiments,”“in some implementations,”“in some designs,”“in various embodiments,”“in various implementations,”, “in various designs,”“in an illustrative example,” or “for example;” or, through the use of parentheses. For the sake of brevity and legibility, the present disclosure does not explicitly recite each and every permutation that may be obtained by choosing from the set of optional features. However, the present disclosure is to be interpreted as explicitly disclosing all such permutations. For example, a system described as having three optional features may be embodied in seven different ways, namely with just one of the three possible features, with any two of the three possible features or with all three of the three possible features.
[0069]In various embodiments, elements described herein as coupled or connected may have an effectual relationship realizable by a direct connection or indirectly with one or more other intervening elements.
[0070]In the present disclosure, the term “any” may be understood as designating any number of the respective elements, i.e. as designating one, at least one, at least two, each or all of the respective elements. Similarly, the term “any” may be understood as designating any collection(s) of the respective elements, i.e. as designating one or more collections of the respective elements, a collection comprising one, at least one, at least two, each or all of the respective elements. The respective collections need not comprise the same number of elements.
[0071]While various embodi