Outsole plate

公开(公告)号:
US10758005B2
公开(公告)日:
2020-09-01
申请号:
US16/384154
申请日:
2019-04-15
授权日:
2020-09-01
受理局:
美国
专利类型:
授权发明
简单法律状态:
有效
法律状态/事件:
授权
IPC分类号:
A43C15/16 | A43B13/22 | A43B13/12 | A43B13/04
战略新兴产业分类:
-
国民经济行业分类号:
C1954 | C1953 | C1952 | C1951 | C2444 | C3389 | C1761 | C1959
当前申请(专利权)人:
NIKE, INC.
原始申请(专利权)人:
NIKE, INC.
当前申请(专利权)人地址:
ONE BOWERMAN DRIVE, 97005, BEAVERTON, OREGON
工商统一社会信用代码:
-
工商登记状态:
其他
工商注册地址:
-
工商成立日期:
1964-01-25
工商企业类型:
-
发明人:
BARTEL, AARON | LACEY, SAM | THUSS, ADAM
代理机构:
HONIGMAN LLP
代理人:
SZALACH, MATTHEW H. | O'BRIEN, JONATHAN P.
摘要:
A sole structure for an article includes a first layer including a first bundle of fibers affixed to a first substrate, a second layer including a second bundle of fibers affixed to a second substrate, a traction element having a first portion disposed between the first substrate and the second substrate and a second portion extending from one of the first layer and the second layer. The sole structure further includes a resin that consolidates the first bundle of fibers and the second bundle of fibers, and secures the traction element between the first bundle of fibers and the second bundle of fibers.
技术问题语段:
The patent text describes the construction of a shoe with an upper and a sole structure. The upper is made from materials that can hold and support a foot, and it can be adjusted to fit around the foot using laces or straps. The bottom part of the upper connects to the sole structure. The sole structure has multiple layers, including an outsole that provides resistance and traction with the ground surface. The outsole may have plates and traction elements to improve grip on the ground. The technical problem addressed in the patent text is how to create a shoe with a comfortable fit and good traction on the ground surface.
技术功效语段:
The present patent relates to articles of footwear with sole structures incorporating outsole plates. The technical effect of the patent is to provide articles of footwear with improved traction and comfort on various surfaces. The outsole plates are made of a rigid or semi-rigid material that provides energy distribution and maximizes engagement with the ground surface. The outsole plates may have traction elements that are interchangeable or formed from rubber or other materials that enhance traction with the ground surface. The patent also describes various methods for forming the outsole plates, including a mold and a stack of outsole plate components. Overall, the patent aims to improve the performance and comfort of articles of footwear with outsole plates.
权利要求:
1. A sole structure for an article of footwear, the sole structure comprising: a first layer including a first bundle of fibers affixed to a first substrate; a second layer including a second bundle of fibers affixed to a second substrate; a traction element having a first portion disposed between the first substrate and the second substrate and a second portion extending from one of the first layer and the second layer; and a resin that consolidates the first bundle of fibers and the second bundle of fibers. 2. The sole structure of claim 1, wherein the first portion is a flange and the second portion is a ground-engaging projection extending from the flange. 3. The sole structure of claim 2, wherein the ground-engaging projection includes a constantly decreasing taper in a direction extending away from the flange. 4. The sole structure of claim 2, wherein the flange is in contact with at least one of the first substrate and the second substrate. 5. The sole structure of claim 1, wherein at least one of the first portion and the second portion of the traction element is in contact with at least one of the fibers of the first bundle of fibers and with the fibers of the second bundle of fibers. 6. The sole structure of claim 1, wherein the first substrate is in contact with the second substrate. 7. The sole structure of claim 1, wherein the second portion of the traction element extends through at least one of the first substrate and the second substrate. 8. The sole structure of claim 1, wherein the second portion of the traction element extends through the fibers of at least one of the first bundle of fibers and the second bundle of fibers. 9. The sole structure of claim 1, wherein the second portion of the traction element extends between adjacent segments of at least one of the first bundle of fibers and the second bundle of fibers. 10. The sole structure of claim 1, wherein the at least one of the first substrate and the second substrate includes an aperture for receiving the second portion of the traction element. 11. The sole structure of claim 1, wherein the first bundle of fibers and the second bundle of fibers include at least one of carbon fibers, boron fibers, glass fibers, and polymeric fibers. 12. A method of forming a sole structure for an article of footwear, the method comprising: attaching a first bundle of fibers to a first substrate to form a first component; attaching a second bundle of fibers to a second substrate to form a second component; positioning a first portion of a traction element between the first substrate and the second substrate; extending a second portion of the traction element from one of the first component and the second component; and consolidating the first bundle of fibers and the second bundle of fibers with a resin. 13. The method of claim 12, wherein positioning a first portion of a traction element between the first substrate and the second substrate includes positioning a flange of the traction element between the first substrate and the second substrate and extending a second portion of the traction element from one of the first component and the second component includes extending a projection of the traction element from the one of the first component and the second component. 14. The method of claim 13, further comprising providing the projection with a constantly decreasing taper in a direction extending away from the flange. 15. The method of claim 13, further comprising placing the flange in contact with at least one of the fibers of the first bundle of fibers and with the fibers of the second bundle of fibers. 16. The method of claim 12, further comprising placing at least one of the first portion and the second portion of the traction element in contact with at least one of the fibers of the first bundle of fibers and with the fibers of the second bundle of fibers. 17. The method of claim 12, further comprising placing the fibers of the first bundle of fibers in contact with the second substrate. 18. The method of claim 12, further comprising placing the first substrate in contact with the second substrate. 19. The method of claim 12, further comprising extending the second portion of the traction element through at least one of the first substrate and the second substrate. 20. The method of claim 12, further comprising extending the second portion of the traction element through the fibers of at least one of the first bundle of fibers and the second bundle of fibers.
技术领域:
[0002]The present disclosure relates to articles of footwear including sole structures incorporating outsole plates.
背景技术:
[0003]This section provides background information related to the present disclosure which is not necessarily prior art. [0004]Articles of footwear conventionally include an upper and a sole structure. The upper may be formed from any suitable material(s) to receive, secure, and support a foot on the sole structure. The upper may cooperate with laces, straps, or other fasteners to adjust the fit of the upper around the foot. A bottom portion of the upper, proximate to a bottom surface of the foot, attaches to the sole structure. [0005]Sole structures generally include a layered arrangement extending between a ground surface and the upper. One layer of the sole structure includes an outsole that provides abrasion-resistance and traction with the ground surface. The outsole may include an outsole plate formed of a rigid or semi-rigid material that provides rigidity and energy distribution across the sole structure. The outsole may be provided with one or more types of traction elements for maximizing engagement with a ground surface. In some cases, the traction elements may be fixed to the outsole plate. Alternatively, the traction elements may be interchangeable and/or may be formed from rubber or other materials that impart durability and wear-resistance, as well as enhancing traction with the ground surface.
发明内容:
-
具体实施方式:
[0025]Corresponding reference numerals indicate corresponding parts throughout the drawings. DETAILED DESCRIPTION [0026]Example configurations will now be described more fully with reference to the accompanying drawings. Example configurations are provided so that this disclosure will be thorough, and will fully convey the scope of the disclosure to those of ordinary skill in the art. Specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of configurations of the present disclosure. It will be apparent to those of ordinary skill in the art that specific details need not be employed, that example configurations may be embodied in many different forms, and that the specific details and the example configurations should not be construed to limit the scope of the disclosure. [0027]The terminology used herein is for the purpose of describing particular exemplary configurations only and is not intended to be limiting. As used herein, the singular articles “a,”“an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,”“comprising,”“including,” and “having,” are inclusive and therefore specify the presence of features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. Additional or alternative steps may be employed. [0028]When an element or layer is referred to as being “on,”“engaged to,”“connected to,”“attached to,” or “coupled to” another element or layer, it may be directly on, engaged, connected, attached, or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,”“directly engaged to,”“directly connected to,”“directly attached to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,”“adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. [0029]The terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections. These elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,”“second,” and other numerical terms do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example configurations. [0030]One aspect of the disclosure provides a sole structure for an article of footwear. The sole structure includes a first layer including a first bundle of fibers affixed to a first substrate, a second layer including a second bundle of fibers affixed to a second substrate, a traction element having a first portion disposed between the first substrate and the second substrate and a second portion extending from one of the first layer and the second layer, and a resin that consolidates the first bundle of fibers and the second bundle of fibers. [0031]Implementations of the disclosure may include one or more of the following optional features. In some examples, the first portion of the traction element is a flange and the second portion of the traction element is a ground-engaging projection extending from the flange. The projection may include a constantly decreasing taper in a direction extending away from the flange. The flange may be in contact with at least one of the fibers of the first bundle of fibers and with the fibers of the second bundle of fibers. [0032]In some examples, at least one of the first portion of the traction element and the second portion of the traction element is in contact with at least one of the fibers of the first bundle of fibers and with at least one of the fibers of the second bundle of fibers. [0033]In some examples, the second portion of the traction element extends through at least one of the first substrate and the second substrate. In some implementations, at least one of the first substrate and the second substrate includes an aperture for receiving the second portion of the traction element. The second portion of the traction element may extend through the fibers of at least one of the first bundle of fibers and the second bundle of fibers. In some implementations, the second portion of the traction element may extend between adjacent segments of at least one of the first bundle of fibers and the second bundle of fibers. [0034]In some implementations, the first portion of the traction element is an anchor portion and the second portion of the traction element is a cleat. Here, the anchor portion may be disposed between the first substrate and the second substrate. Further, the anchor portion may include a cleat-retention feature operable to receive and retain a portion of the cleat therein. Here, the cleat-retention feature may include a first series of threads operable to matingly receive a second series of threads of the cleat. [0035]In some examples, the resin is a polymeric resin. Further, the first bundle of fibers and the second bundle of fibers may include at least one of carbon fibers, boron fibers, glass fibers, and polymeric fibers. In some examples, the first bundle of fibers and the second bundle of fibers are affixed to respective ones of the first substrate and the second substrate via stitching. At least one of the first bundle of fibers and the second bundle of fibers includes first fibers comingled with second fibers, the second fibers including at least one of a different length, thickness, melting temperature, and tensile strength than the first fibers. At least one of the stitching, the first substrate, the second substrate, the first fibers, and the second fibers may comprise a thermoplastic material. [0036]In some implementations, at least one of the fibers of the first bundle of fibers, the fibers of the second bundle of fibers, the first substrate, and the second substrate comprise a thermoplastic material. [0037]In some examples, the sole structure including any of the aforementioned features may be incorporated into an article of footwear. Here, the traction element may form a portion of a ground-engaging surface of the article of footwear. [0038]Another aspect of the disclosure provides a method of forming a sole structure for an article of footwear. The method includes attaching a first bundle of fibers to a first substrate to form a first component and attaching a second bundle of fibers to a second substrate to form a second component. The method also includes positioning a first portion of a traction element between the first substrate and the second substrate and extending a second portion of the traction element from one of the first component and the second component. The method further includes consolidating the first bundle of fibers and the second bundle of fibers with a resin. [0039]Implementations of this aspect of the disclosure may include one or more of the following optional features. In some implementations, positioning a first portion of a traction element between the first substrate and the second substrate includes positioning a flange of the traction element between the first substrate and the second substrate and extending a second portion of the traction element from one of the first component and the second component includes extending a projection of the traction element from the one of the first component and the second component. Here the method may include providing the projection with a constantly decreasing taper in a direction extending away from the flange. Additionally or alternatively, the method may also include placing the flange in contact with at least one of the fibers of the first bundle of fibers and with the fibers of the second bundle of fibers. [0040]In some examples, the method includes placing at least one of the first portion and the second portion of the traction element in contact with at least one of the fibers of the first bundle of fibers and with the fibers of the second bundle of fibers. The method may also include placing the fibers of the first bundle of fibers in contact with the second substrate. Optionally, the method may include placing the first substrate in contact with the second substrate. [0041]In some configurations, the method includes extending the second portion of the traction element through at least one of the first substrate and the second substrate. The method may also include extending the second portion of the traction element through the fibers of at least one of the first bundle of fibers and the second bundle of fibers. The method may further include extending the second portion of the traction element between adjacent segments of at least one of the first bundle of fibers and the second bundle of fibers. [0042]In some implementations, positioning a first portion of a traction element between the first substrate and the second substrate includes positioning an anchor portion of the traction element between the first substrate and the second substrate and extending a second portion of the traction element from one of the first component and the second component includes extending a cleat from the one of the first component and the second component. Here, the method may include positioning the anchor portion between the first substrate and the second substrate. Additionally or alternatively, the method may include providing the anchor portion with a cleat-retention feature operable to receive and retain a portion of the cleat therein. Here, the method may further include providing the cleat-retention feature with a first series of threads operable to matingly receive a second series of threads of the cleat. [0043]In some examples, consolidating the first bundle of fibers and the second bundle of fibers with resin includes consolidating the first bundle of fibers and the second bundle of fibers with a polymeric resin. When attaching a first bundle of fibers to a first substrate and attaching a second bundle of fibers to a second substrate, the method may include attaching a first bundle of fibers and a second bundle of fibers including at least one of carbon fibers, boron fibers, glass fibers, and polymeric fibers. Additionally or alternatively, when attaching a first bundle of fibers to a first substrate and attaching a second bundle of fibers to a second substrate, the method may include attaching a first bundle of fibers and a second bundle of fibers to respective ones of the first substrate and the second substrate via stitching. Here, attaching a first bundle of fibers to a first substrate and attaching a second bundle of fibers to a second substrate may include attaching a first bundle of fibers and a second bundle of fibers each having first fibers comingled with second fibers, the second fibers including at least one of a different length, thickness, melting temperature, and Young's modulus than the first fibers. Here, the method may further include forming at least one of the stitching, the first substrate, the second substrate, the first fibers, and the second fibers from a thermoplastic material. [0044]In some configurations, the method includes forming at least one of the fibers of the first bundle of fibers, the fibers of the second bundle of fibers, the first substrate, and the second substrate from a thermoplastic material. The sole structure including any of the aforementioned features may be incorporated into an article of footwear. Here, the method may include forming a portion of a ground-contacting surface of the article of footwear with the traction element. [0045]Another aspect of the disclosure provides a sole structure for an article of footwear. The sole structure formed by a process including attaching a first bundle of fibers to a first substrate to form a first component and attaching a second bundle of fibers to a second substrate to form a second component. The process also includes positioning a first portion of a traction element between the first substrate and the second substrate. The process further includes extending a second portion of the traction element from one of the first component and the second component and consolidating the first bundle of fibers and the second bundle of fibers with a resin. [0046]Implementations of this aspect of the disclosure may include one or more of the following optional features. In some examples, the first portion is a flange and the second portion is a ground-engaging projection extending from the flange. Here, the projection may include a constantly decreasing taper in a direction extending away from the flange. Optionally, the flange may be in contact with at least one of the fibers of the first bundle of fibers and with the fibers of the second bundle of fibers. [0047]In some configurations, at least one of the first portion and the second portion of the traction element is in contact with at least one of the fibers of the first bundle of fibers and with the fibers of the second bundle of fibers. The fibers of the first bundle of fibers may be in contact with the second substrate. The first substrate may also be in contact with the second substrate. [0048]In some implementations, the second portion of the traction element extends through at least one of the first substrate and the second substrate. The second portion of the traction element may also extend through the fibers of at least one of the first bundle of fibers and the second bundle of fibers. Optionally, the second portion of the traction element may extend between adjacent segments of at least one of the first bundle of fibers and the second bundle of fibers. [0049]In some examples, the first portion of the traction element is an anchor portion and the second portion of the traction element is a cleat. Here, the anchor portion may be disposed between the first substrate and the second substrate. Additionally or alternatively, the anchor portion includes a cleat-retention feature operable to receive and retain a portion of the cleat therein. The cleat-retention feature may include a first series of threads operable to matingly receive a second series of threads of the cleat. [0050]In some configurations, the resin is a polymeric resin. The first bundle of fibers and the second bundle of fibers may include at least one of carbon fibers, boron fibers, glass fibers, and polymeric fibers. The first bundle of fibers and the second bundle of fibers may be stitched to respective ones of the first substrate and the second substrate via stitching. Here, at least one of the first bundle of fibers and the second bundle of fibers may include first fibers comingled with second fibers, the second fibers including at least one of a different length, thickness, melting temperature, and Young's modulus than the first fibers. Optionally, at least one of the stitching, the first substrate, the second substrate, the first fibers, and the second fibers may include a thermoplastic material. [0051]In some implementations, at least one of the fibers of the first bundle of fibers, the fibers of the second bundle of fibers, the first substrate, and the second substrate include a thermoplastic material. The sole structure including any of the above-mentioned features may be incorporated into an article of footwear. Here, the traction element may form a portion of a ground-contacting surface of the article of footwear. [0052]Referring to FIGS. 1-3, an article of footwear 10 includes an upper 100 and sole structure 200. The article of footwear 10 may be divided into one or more regions. The regions may include a forefoot region 12, a mid-foot region 14, and a heel region 16. The forefoot region 12 may be subdivided into a toe portion corresponding with phalanges, and a ball portion associated with metatarsal bones of a foot. The mid-foot region 14 may correspond with an arch area of the foot, and the heel region 16 may correspond with rear portions of the foot, including a calcaneus bone. The footwear 10 may further include an anterior end 18 associated with a forward-most point of the forefoot region 12, and a posterior end 20 corresponding to a rearward-most point of the heel region 16. A longitudinal axis AF of the footwear 10 extends along a length of the footwear 10 from the anterior end 18 to the posterior end 20, and generally divides the footwear 10 into a medial side 22 and a lateral side 24. Accordingly, the medial side 22 and the lateral side 24 respectively correspond with opposite sides of the footwear 10 and extend through the regions 12, 14, 16. [0053]The upper 100 includes interior surfaces that define an interior void 102 configured to receive and secure a foot for support on sole structure 200. The upper 100 may be formed from one or more materials that are stitched or adhesively bonded together to form the interior void 102. Suitable materials of the upper may include, but are not limited to, mesh, textiles, foam, leather, and synthetic leather. The materials may be selected and located to impart properties of durability, air-permeability, wear-resistance, flexibility, and comfort. [0054]In some examples, one or more fasteners 110 extend along the upper 100 to adjust a fit of the interior void 102 around the foot and to accommodate entry and removal of the foot therefrom. The upper 100 may include apertures 112 such as eyelets and/or other engagement features such as fabric or mesh loops that receive the fasteners 110. The fasteners 110 may include laces, straps, cords, hook-and-loop, or any other suitable type of fastener. The upper 100 may include a tongue portion 114 that extends between the interior void 102 and the fasteners. [0055]With reference to FIGS. 2 and 3, in some examples the upper 100 includes a strobel 104 having a bottom surface opposing the sole structure 200 and top surface formed on an opposite side from the bottom surface and defining a footbed 106 of the interior void 102. Stitching or adhesives may secure the strobel to the upper 100. The footbed 106 may be contoured to conform to a profile of the bottom surface (e.g., plantar) of the foot. Optionally, the upper 100 may also incorporate additional layers such as an insole 108 or sockliner that may be disposed upon the strobel 104 and reside within the interior void 102 of the upper 100 to receive a plantar surface of the foot to enhance the comfort of the article of footwear 10. An ankle opening 116 in the heel region 16 may provide access to the interior void 102. For example, the ankle opening 116 may receive a foot to secure the foot within the interior void 102 and to facilitate entry and removal of the foot from and to the interior void 102. [0056]With reference to FIGS. 2 and 3, the sole structure includes a midsole 202 and an outsole 204. Generally, the midsole 202 is disposed intermediate the outsole 204 and the upper 100, and is configured to attenuate forces associated with impact of the sole structure 200 with a ground surface. The midsole 202 may extend fully or partially along a length of the footwear 10. In some examples the midsole 202 may be fragmentary, such that a plurality of midsole segments are distributed along the sole structure 200. Stitching or adhesives may secure the midsole 202 to the upper 100. [0057]The midsole 202 may be formed from any suitable materials that compress resiliently under applied loads. Examples of suitable polymer materials for the foam materials include ethylene vinyl acetate (EVA) copolymers, polyurethanes, polyethers, and olefin block copolymers. The foam can also include a single polymeric material or a blend of two or more polymeric materials including a polyether block amide (PEBA) copolymer, the EVA copolymer, a thermoplastic polyurethane (TPU), and/or the olefin block copolymer. [0058]The outsole 204 includes an upper surface 206 and a ground-engaging surface 208 formed on an opposite side from the upper surface 206. The outsole 204 is a full-length outsole 204, and extends continuously from a first end 210 at the anterior end 18 of the footwear 10 to a second end 212 at the posterior end 20, and from the medial side 22 to the lateral side 24. [0059]With reference the FIGS. 2-6B, components of the outsole 204 include an outsole plate 214, one or more first traction elements 216, and a webbed ground-engaging assembly 218. As discussed in greater detail below, the outsole 204 is formed by joining each of the components 214, 216, 218 together using a curable resin 220. For example, the outsole plate 214, the first traction elements 216, and the ground-engaging assembly 218 may be disposed within a mold cavity and subjected to a combination of pressure and heat, whereby the resin 220 is delivered to the mold cavity and impregnates and/or encapsulates each the components 214, 216, 218 to form a unitary structure. Accordingly, the outsole plate 214, the first traction elements 216, and the webbed ground-engaging assembly 218 may cooperate to define the ground-engaging surface 208 of the outsole 204. [0060]With reference to FIGS. 2 and 4, the outsole plate 214 extends from the first end 210 to the second end 212. In the illustrated example, the outsole plate 214 is a full-length plate. Accordingly, the first end 210 of the outsole plate 214 is coincident with the anterior end 18 of the footwear 10, while the second end 212 is coincident with the posterior end 20 of the footwear. Alternatively, the outsole plate 214 may be a partial-length plate that extends from the anterior end 18 to an intermediate portion of the footwear 10. Additionally or alternatively, the outsole plate 214 may be fragmentary, and include a plurality of individual segments disposed along the sole structure. [0061]With reference to FIGS. 2-6B, the outsole plate 214 is formed of a one or more layers 221, 222 stacked in series and bonded together by the resin 220. In one example, the outsole plate 214 includes a lower layer 221 and an upper layer 222, as shown in FIGS. 2 and 3. As explained in greater detail below, each of the layers 221, 222 includes at least one ply 223, 224 formed from one or more strands 226, 226a-226c of fibers 227 arranged on substrates 228 in selected patterns to impart stiffness and gradient load paths throughout the outsole plate 214. Each of the lower layer 221 and the upper layer 222 may be formed with various quantities and arrangements of the plies 223, 224 to impart desired torsional properties to the outsole plate 214. Accordingly, the lower layer 221 and the upper layer 222 are generically represented in FIGS. 2 and 3, while examples of configurations of the plies 223, 224 for each of the layers 221, 222 are described below. With continued reference to FIGS. 2 and 3, the lower layer 222 of the outsole plate 214 is provided with preformed apertures 225 for receiving the traction elements 216, as discussed below. [0062]Each strand 226 may refer to a tow of a plurality of fibers 227, a monofilament, yarn, or polymer pre-impregnated tows. As used herein, the term “tow” or “strand” refers to a bundle (i.e., plurality of filaments (e.g., fiber) that may be twisted or untwisted and each tow may be designated a size associated with a number of fibers 227 the corresponding tow contains. For instance, a single strand 226 may range in size from about 1,000 fibers per bundle to about 48,000 fibers per bundle. [0063]In some configurations, the fibers 227 associated with each strand 226 include at least one of carbon fibers, boron fibers, glass fibers, and polymeric or thermoplastic fibers. Fibers 227 such as carbon fibers, aramid fibers, and boron fibers may provide a high Young's modulus while glass fibers (e.g., fiberglass) and polymer fibers (e.g., synthetic fibers) provide a medium modulus. Additionally or alternatively, each strand 226 may be provided with first fibers 227 comingled with second fibers 227, whereby the second fibers 227 have one or more of a different length, thickness, melting temperature, and/or Young's modulus than the first fibers 227. For example, the strand 226 may include a plurality of carbon fibers 227 and a plurality of polymeric resin fibers 227 that, when activated, solidify and hold the carbon fibers 227 in a desired shape and position relative to one another. [0064]As used herein, the substrate 228 refers to any one of a veil, carrier, or backer to which at least one strand 226 of fibers 227 is attached. The substrate 228 may be formed from a thermoset polymeric material or a thermoplastic polymeric material and can be a textile (e.g., knit, woven, or non-woven), an injection molded article, an organosheet, or a thermoformed article. [0065]The strands 226 of fibers 227 forming the plies 223, 224 of each layer 221, 222 may be affixed to the same or separate substrates 228 and embroidered in a layered configuration. If the strands 226 of fibers 227 are applied to separate substrates 228, the individual substrates 228 are stacked on top of one another once each substrate 228 is supplied with a strand 226 of fibers 227. If, on the other hand, only one substrate 228 is utilized in forming the outsole plate 214, a first strand 226 of fibers 227 is applied to the substrate 228 with additional strands 226 of fibers 227 (i.e., layers) being applied on top of the first strand 226. Finally, a single, continuous strand 226 of fibers 227 may be used to form the outsole plate 214, whereby the strand 226 is initially applied and affixed to the substrate 228 and is subsequently layered on top of itself to form a layered construction. [0066]When forming the layers 221, 222 of the outsole plate 214, the strand or strands 226 of the plies 223, 224 may be applied directly to the substrate 228, and may be attached to the substrate 228 using stitching 230 to hold the strands 226 in a desired location. In some examples, the stitching 230 may include a continuous zig-zag stitch extending along the strand. Alternatively, the stitching 230 may be provided at discrete attachment points spaced along the strand 226. [0067]The stitching 230 may be formed from the same material as the substrate 228. Alternatively, the stitching 230 may be formed from a different material than the material forming the substrate 228 such that the stitching 230 is associated with a higher melting point than the substrate 228. Providing the stitching 230 with a higher melting point than the substrate 228 allows the stitching 230 to melt after the substrate 228 when heat is applied during formation of the outsole plate 214. In some examples, the stitching 230, or at least a portion thereof, is formed from a thermoplastic material. [0068]With reference to FIGS. 5A, 6A, 7, and 8, the lower layer 221 of the illustrated example includes a substrate 228, 228a positioned on top of the lower layer 221, a first support ply 223e adjacent to and beneath the substrate 228b, and a second support ply 223c beneath the first support ply 223e. With the illustrated example, both of the support plies 223c, 223e are beneath the substrate 228b and are attached to the substrate 228b using a single “pass” of stitching 230, whereby each stitch 230 secures both plies 223c, 223e. However, as discussed above, the first support ply 223e may be stitched to the substrate 228b separately from the second support ply 223c. Further, although support plies 223c, 223e having strands 226 extending transverse to each other are illustrated, any combination of the support plies 223a-223e described below may be used in the lower layer 221. [0069]Referring to FIGS. 9A-9E, several examples of configurations of the support plies 223 are shown. As shown, the support plies 223 of the outsole plate 214 each include at least one support ply strand 226, 226a wound in a uniform serpentine configuration, such that the support ply strands 226a each include a plurality of linear segments 232 arranged in parallel. Each of the segments 232 is straight and is connected to adjacent ones of the segments 232 by loops 234 at each end. In some examples, the support ply strands 226a may be tightly wound, whereby each segment 232 abuts an adjacent one of the segments 232 to provide a substantially continuous layer of the support ply strands 226a. In some examples, the support ply strands 226a may be wound loosely, whereby adjacent segments 232 are separated from each other by a gap (not shown). In some examples, the segments 232 may be equally spaced from each other. However, spacing between segments 232 may be variable, such that some segments are spaced farther apart from each other than others. Additionally, some segments 232 may be spaced apart from each other, while other segments 232 abut each other. [0070]As shown in FIGS. 9A-9E, the segments 232 may extend parallel to or at an oblique angle Φ to the longitudinal axis AF. For example, a longitudinal axis AS of the segments 232 may extend at oblique angles to the longitudinal axis AF ranging from −30 degrees (−30°) to 30 degrees (30°). In one example, the segments 232 may be oriented at +/−30 degrees (30°) relative to a longitudinal axis AF of the article of footwear 10, as shown in FIGS. 9C and 9E. In another example, the segments 232 of the support ply strand 226a may be arranged at an angle Φ of +/−15 degrees (15°) relative to a longitudinal axis AF of the article of footwear 10, as shown in FIGS. 9B and 9D. Other angles may be selected to impart desired stiffness to the outsole plate 214. [0071]As introduced above, the lower layer 221 includes a plurality of apertures 225 formed therethrough. Each of the apertures 225 is configured to receive a portion of one of the traction elements 216 therethrough when the components 216, 218, 221, 222 of the outsole plate 214 are assembled prior to molding. As shown in FIG. 7, the apertures 225 may be formed through the substrate 228a and each of the support plies 223. As discussed above, the substrate 228a is formed of a substantially continuous sheet of material. Accordingly, the apertures 225 may be formed in the substrate 228a by material removal methods, such as cutting or punching. Conversely, the apertures 225 are formed through the support plies 223 by stitching adjacent segments 232 of the support ply strands 226a of each support ply 223 to be spaced apart from each other in discrete areas of the lower layer 221. As shown in FIG. 7, the lower layer 221 may include an increased density of stitching 230 around each of the apertures 225 so that the segments 232 follow an arcuate path to define an outer periphery of the aperture 225. Accordingly, a first one of the apertures 225 is defined by (i) an opening that is cut or punched through the material of the substrate 228a, (ii) a first space between two adjacent segments 232 of a support ply strands 226a of a first one of the plies 223, and (iii) a second space between two adjacent support ply strands 226a of a second one of the plies 223, whereby each of the opening, the first space, and the second space are in communication with each other and cooperate to define an uninterrupted passage through the lower layer 221. Additional openings or spaces may be formed where additional substrates 228 or plies 223, 224 are included in the lower layer 221. [0072]Turning now to FIGS. 5A, 6A, and 10-11G, example configurations of the upper layer 222 are provided. In addition to support plies 223 described above, the upper layer 222 of the outsole plate 214 further includes one or more torsion plies 224. Unlike the support plies 223, which have a substantially continuous and homogenous arrangement of adjacently-laid elongate segments 232 of support ply strands 226a, the torsion plies 224 are formed from torsion strands 226b arranged in
返回