Direct printing to fabric

公开(公告)号:
US10750828B2
公开(公告)日:
2020-08-25
申请号:
US15/655161
申请日:
2017-07-20
授权日:
2020-08-25
受理局:
美国
专利类型:
授权发明
简单法律状态:
有效
法律状态/事件:
授权
IPC分类号:
A43D8/00 | B29C64/106 | A43B3/00 | B29C70/78 | A43D11/00 | A43B23/02 | A43B1/04 | B33Y80/00 | B33Y10/00 | B33Y50/00 | B33Y30/00 | B29L31/50
战略新兴产业分类:
数字文化创意活动
国民经济行业分类号:
C2039 | C3553 | O8192 | C3552
当前申请(专利权)人:
NIKE, INC.
原始申请(专利权)人:
NIKE, INC.
当前申请(专利权)人地址:
ONE BOWERMAN DRIVE, 97005-6453, BEAVERTON, OREGON
工商统一社会信用代码:
-
工商登记状态:
其他
工商注册地址:
-
工商成立日期:
1964-01-25
工商企业类型:
-
发明人:
JONES, DAVID P. | LARSON, RYAN R.
代理机构:
KLARQUIST SPARKMAN, LLP
代理人:
-
摘要:
Methods and systems are disclosed for three-dimensional printing directly onto an article of apparel. Disclosed is a method and system for direct three-dimensional printing onto an article of apparel, including positioning at least a portion of the article on a tray in a three-dimensional printing system, the portion being positioned substantially flat on the tray, printing a three-dimensional material directly onto the article using a three-dimensional pattern, curing the printed material, and removing the article from the three-dimensional printing system.
技术问题语段:
The patent text describes a method and system for 3D printing onto apparel, footwear, or equipment using a 3D printer. The technical problem addressed in the patent is how to efficiently and accurately print directly onto fabric materials, such as those used in footwear, using a 3D printing process.
技术功效语段:
The patent text describes a method for 3D printing onto apparel, footwear, or equipment using a 3D printing system. The technical effects of this patent include the ability to directly print onto fabric materials using a 3D printing process, which allows for more precise and accurate printing of designs onto articles of apparel and footwear. The method also allows for the printing of multiple layers of 3D printed material on the article, providing greater flexibility and customization options. Additionally, the patent describes a system for 3D printing onto an article of footwear while it is still on a tray, allowing for easy and efficient printing of designs onto the footwear.
权利要求:
1. A method of direct three-dimensional printing onto an article of footwear, comprising: positioning an upper of the article of footwear on a flat tray in a three-dimensional printing system, the upper comprising a fabric and being positioned substantially flat on the flat tray to provide a fabric printing substrate; printing a three-dimensional material directly onto the fabric of the upper using a three-dimensional pattern, wherein the three-dimensional material includes a first strip and a second strip, wherein the first strip extends from a medial side of the upper to a lateral side of the upper, and wherein the second strip extends from the medial side of the upper to the lateral side of the upper and intersects the first strip; curing the three-dimensional material; and removing the upper from the three-dimensional printing system, wherein the fabric printing substrate is part of the article of footwear. 2. The method according to claim 1, wherein the printing onto the fabric of the upper comprises printing a plurality of loops onto the fabric of the upper, and wherein each loop of the plurality of loops extends upwardly from a lower portion of the upper and around a lace aperture to provide the upper with structural support. 3. The method according to claim 1, wherein the printing onto the fabric of the upper further comprises allowing the three-dimensional material to at least partially absorb into the fabric prior to the curing. 4. The method according to claim 1, wherein the printing onto the fabric of the upper further comprises: printing a first layer of the three-dimensional material; allowing the first layer of the three-dimensional material to at least partially absorb into the fabric of the upper; curing the first layer of the three-dimensional material; printing at least one additional layer of the three-dimensional material on the cured first layer, wherein the at least one additional layer of the three-dimensional material includes the first strip and the second strip; and curing the at least one additional layer. 5. The method according to claim 4, wherein the first layer has a first modulus of elasticity and the at least one additional layer has a second modulus of elasticity different than the first modulus. 6. The method according to claim 4, wherein the first layer has a first color and the at least one additional layer has a second color. 7. The method according to claim 1, wherein the fabric of the upper comprises at least one of a textile, a natural fabric, a synthetic fabric, a knit, a woven material, a nonwoven material, a mesh, a leather, a synthetic leather, a polymer, a rubber, and a foam. 8. The method according to claim 1, wherein the fabric of the upper has at least one irregular surface having an irregular surface topology. 9. The method according to claim 8, wherein the at least one irregular surface is the fabric printing substrate on which the printing occurs, and wherein printing the three-dimensional material comprises compensating for irregularities in the at least one irregular surface by at least one of adjusting a distance between a printhead and the at least one irregular surface and adjusting at least one of size, rate, and distribution of material ejected from the printhead. 10. The method according to claim 1, wherein the removing the upper does not require a release layer disposed between the three-dimensional material and the flat tray. 11. The method according to claim 1, wherein the three-dimensional material comprises at least one of an ink, a resin, an acrylic, a polymer, a thermoplastic material, a thermosetting material, and a light-curable material. 12. The method according to claim 1, wherein the three-dimensional material further comprises a filler material. 13. The method according to claim 1, wherein the three-dimensional material is adhered or bonded to the fabric of the upper. 14. A method of fabricating an article of footwear, comprising: providing a three-dimensional pattern to a print server; positioning an upper of the article of footwear on a tray in a three-dimensional printing system, the upper comprising a fabric and being positioned substantially flat on the tray to provide a fabric printing substrate, wherein the fabric has at least one irregular surface having an irregular surface topology; aligning the upper on the tray with the three-dimensional pattern; printing a three-dimensional material directly onto the fabric of the upper using the three-dimensional pattern on the print server and the three-dimensional printing system, wherein printing the three-dimensional material comprises compensating for irregularities in the at least one irregular surface by at least one of adjusting a distance between a printhead and the at least one irregular surface and adjusting at least one of size, rate, and distribution of material ejected from the printhead, wherein the three-dimensional material includes a first strip and a second strip, wherein the first strip extends from a medial side of the upper to a lateral side of the upper, and wherein the second strip extends from the medial side of the upper to the lateral side of the upper and intersects the first strip; curing the three-dimensional material; removing the upper from the three-dimensional printing system; and assembling the article of footwear using the upper. 15. The method according to claim 14, wherein the printing onto the fabric of the upper comprises printing a plurality of loops onto the fabric of the upper, and wherein each loop of the plurality of loops extends upwardly from a lower portion of the upper and around a lace aperture to provide the upper with structural support. 16. The method according to claim 14, wherein the printing onto the fabric of the upper further comprises: printing a first layer of the three-dimensional material onto the upper, wherein the first layer of the three-dimensional material includes the first strip and the second strip; allowing the first layer of the three-dimensional material to at least partially absorb into the fabric of the upper; curing the first layer of the three-dimensional material; printing at least one additional layer of the three-dimensional material on the cured first layer; and curing the at least one additional layer. 17. A method of fabricating an article of footwear, comprising: providing at least a first three-dimensional pattern and a second three-dimensional pattern to a print server; positioning at least a first fabric portion of the article of footwear on a tray in a three-dimensional printing system, the first fabric portion being positioned substantially flat on the tray to provide a first fabric printing substrate, wherein the first fabric portion comprises a first region of an upper of the article footwear; aligning the first fabric portion with the first three-dimensional pattern; printing at least one layer of a first three-dimensional material having a first material property directly onto the first fabric portion using the first three-dimensional pattern, wherein the at least one layer of the first three-dimensional material includes a first strip extending from a medial side of the upper to a lateral side of the upper; allowing the at least one layer of the first three-dimensional material to at least partially absorb into the first fabric portion; curing the at least one layer of the first three-dimensional material; positioning at least a second fabric portion of the article of footwear on the tray, the second fabric portion being positioned substantially flat on the tray to provide a second fabric printing substrate, wherein the second fabric portion comprises a second region of the upper; aligning the second fabric portion with the second three-dimensional pattern; printing at least one layer of a second three-dimensional material having a second material property directly onto the second fabric portion using the second three-dimensional pattern, wherein the at least one layer of the second three-dimensional material includes a second strip extending from the medial side of the upper to the lateral side of the upper and intersecting the first strip; allowing the at least one layer of the second three-dimensional material to at least partially absorb into the second fabric portion; curing the at least one layer of the second three-dimensional material; removing the first and second fabric portions from the three-dimensional printing system, wherein the first and second fabric printing substrates are part of the article of footwear; and assembling the article of footwear using the first and second fabric portions. 18. The method according to claim 17, wherein the first and second three-dimensional materials are selected from a group comprising an ink, a resin, an acrylic, a polymer, a thermoplastic material, a thermosetting material, and a light-curable material. 19. The method according to claim 17, wherein the first three-dimensional material is adhered or bonded to the first fabric portion of the article of footwear, and the second three-dimensional material is adhered or bonded to the second fabric portion of the article of footwear. 20. The method of claim 17, wherein the first fabric portion has at least one irregular surface on which the printing the at least one layer of the first three-dimensional material occurs, and wherein printing the at least one layer of the first three-dimensional material comprises compensating for irregularities in the at least one irregular surface by at least one of adjusting a distance between a printhead and the at least one irregular surface and adjusting at least one of size, rate, and distribution of material ejected from the printhead.
技术领域:
[0002]This disclosure relates generally to the field of three-dimensional (“3D”) printing onto an article of apparel, footwear, or equipment, and more specifically to methods and systems for 3D printing directly onto fabric apparel materials.
背景技术:
-
发明内容:
-
具体实施方式:
[0034]The following discussion and accompanying figures disclose methods and systems for 3D printing and assembly of an article of footwear having an upper that includes 3D printing directly onto the upper material. In particular, an exemplary method is disclosed for 3D printing directly onto a fabric material, which allows building of a structure on the fabric for use in apparel applications. The disclosed methods and systems may use any suitable 3D printing system. [0035]As used throughout this disclosure, the terms “three-dimensional printing system,”“three-dimensional printer,”“3D printing system,” and “3D printer” refer to any known 3D printing system or printer. Contrary to known 3D printing methods, however, the disclosed methods and systems accomplish 3D printing directly onto any surface of a textile, a natural fabric, a synthetic fabric, a knit, a woven material, a nonwoven material, a mesh, a leather, a synthetic leather, a polymer, a rubber, and a foam, or any combination of them, without the need for a release layer interposed between a substrate and the bottom of the printed material, and without the need for a perfectly or near-perfectly flat substrate surface on which to print. For example, the disclosed methods may include printing a resin, acrylic, or ink material onto a fabric, for example a knit material, where the material is adhered/bonded to the fabric and where the material does not generally delaminate when flexed, rolled, worked, or subject to additional assembly processes/steps. As used throughout this disclosure, the term “fabric” may be used to refer generally to materials chosen from any textile, natural fabric, synthetic fabric, knit, woven material, nonwoven material, mesh, leather, synthetic leather, polymers, rubbers, and foam. Also as used throughout this disclosure, the terms “printing” or “printed,” and “depositing” or “deposited,” are each used synonymously, and are intended to refer to the association of a material from a source of the material to a receiving surface or object. [0036]Consistent with an embodiment, an exemplary article of footwear is disclosed as having a general configuration suitable for walking or running. As used throughout this disclosure, the terms “article of footwear” and “footwear” include any footwear and any materials associated with footwear, including an upper, and may also be applied to a variety of athletic footwear types, including baseball shoes, basketball shoes, cross-training shoes, cycling shoes, football shoes, tennis shoes, soccer shoes, and hiking boots, for example. As used throughout this disclosure, the terms “article of footwear” and “footwear” also include footwear types that are generally considered to be nonathletic, formal, or decorative, including dress shoes, loafers, sandals, slippers, boat shoes, and work boots. Disclosed embodiments apply, therefore, to any footwear type. [0037]While the disclosed embodiments are described in the context of footwear, the disclosed embodiments may further be equally applied to any article of clothing, apparel, or equipment that includes 3D printing. For example, the disclosed embodiments may be applied hats, caps, shirts, jerseys, jackets, socks, shorts, pants, undergarments, athletic support garments, gloves, wrist/arm bands, sleeves, headbands, any knit material, any woven material, any nonwoven material, sports equipment, etc. Thus, as used throughout this disclosure, the term “article of apparel” may refer to any apparel or clothing, including any article of footwear, as well as hats, caps, shirts, jerseys, jackets, socks, shorts, pants, undergarments, athletic support garments, gloves, wrist/arm bands, sleeves, headbands, any knit material, any woven material, any nonwoven material, etc. As used throughout this disclosure, the terms “article of apparel,”“apparel,”“article of footwear,” and “footwear” may also refer to a textile, a natural fabric, a synthetic fabric, a knit, a woven material, a nonwoven material, a mesh, a leather, a synthetic leather, a polymer, a rubber, and a foam. For example, materials used in footwear formation are disclosed in U.S. Pat. No. 5,709,954, which is incorporated by reference. [0038]In accordance with the systems and methods described throughout this disclosure, there is provided a method of direct three-dimensional printing onto an article of apparel, comprising: designing a three-dimensional pattern for printing onto the article; positioning at least a portion of the article on a tray in a three dimensional printing system, the portion being positioned substantially flat on the tray; printing a three-dimensional material directly onto the article using the designed pattern; curing the printed material; and removing the article from the three-dimensional printing system. [0039]In accordance with the systems and methods described throughout this disclosure, there is also provided a method of fabricating an article of footwear, comprising: designing a three-dimensional pattern for printing onto an upper; providing the pattern to a print server; positioning at least a portion of the upper on a tray in a three dimensional printing system, the portion being positioned substantially flat on the tray; aligning the portion of the upper on the tray with the pattern; printing a three-dimensional material directly onto the upper using the designed pattern on the print server and the three-dimensional printing system; curing the printed material; removing the upper from the three-dimensional printing system; and assembling the article of footwear using the printed upper and at least one footwear component chosen from a sock liner, a midsole, and an outsole. [0040]In accordance with the systems and methods described throughout this disclosure, there is provided a method of fabricating an article of footwear, comprising: designing a three-dimensional pattern for printing onto an upper; providing the pattern to a print server; positioning at least a portion of the upper on a tray in a three dimensional printing system, the portion being positioned substantially flat on the tray; aligning the portion of the upper on the tray with the pattern; printing a first layer of three-dimensional material directly onto the upper using the designed pattern on the print server and the three-dimensional printing system; allowing the first layer of printed material to at least partially absorb into a surface of the upper; curing the first layer, wherein the cured first layer has a first modulus of elasticity; printing at least one additional layer of the material on the cured first layer; curing the at least one additional layer, wherein the cured at least one additional layer has a different modulus of elasticity than the first modulus; removing the upper from the three-dimensional printing system; and assembling the article of footwear using the printed upper and at least one footwear component chosen from a sock liner, a midsole, and an outsole. [0041]In accordance with the systems and methods described throughout this disclosure, there is provided a method of fabricating an article of footwear, comprising: designing at least a first three-dimensional pattern and a second three dimensional pattern for printing onto an upper; providing the at least first and second three-dimensional patterns to a print server; positioning at least a first portion of the upper on a tray in a three dimensional printing system, the first portion being positioned substantially flat on the tray; aligning the first portion of the upper with the first pattern; printing at least one layer of a first three-dimensional material having a first material property directly onto the first portion of the upper using the designed first pattern; allowing the at least one layer of printed first three-dimensional material to at least partially absorb into a first portion of a surface of the upper; curing the at least one layer of printed first three-dimensional material; positioning at least a second portion of the upper on the tray, the second portion being positioned substantially flat on the tray; aligning the second portion of the upper with the second pattern; printing at least one layer of a second three-dimensional material having a second material property directly onto the second portion of the upper using the designed second pattern; allowing the at least one layer of printed second three-dimensional material to at least partially absorb into a second portion of the surface of the upper; curing the at least one layer of printed second three-dimensional material; removing the upper from the three-dimensional printing system; and assembling the article of footwear using the printed upper and at least one footwear component chosen from a sock liner, a midsole, and an outsole. [0042]In accordance with the systems and methods described throughout this disclosure, there is provided a system for three-dimensional printing directly onto a fabric upper, comprising: a first nontransitory computer-readable medium encoded with a first computer program product loadable into a first memory of a first computer and including first software code portions for storing a three-dimensional pattern for printing directly onto the upper; a print server; a switching device; and a three-dimensional printer device, wherein the print server is in direct communication with the three dimensional printer device and the switching device, wherein the switching device is in direct communication with the three dimensional printer device and the print server, wherein the first nontransitory computer readable medium is in direct communication with the switch, wherein the print server comprises a second nontransitory computer-readable medium encoded with a second computer program product loadable into a second memory of a second computer and including second software code portions for instructing the three-dimensional printing device to print directly onto the upper through a sequence of printing steps; wherein the three dimensional printer device comprises a tray receiving the fabric upper, at least one printing head for printing onto the upper in the sequence, and at least one ultraviolet light for curing material printed onto the upper, and wherein the three dimensional printing system does not require a substantially flat surface for printing. [0043]Additional features and advantages will be set forth in part in the description that follows, being apparent from the description or learned by practice of embodiments. Both the foregoing description and the following description are exemplary and explanatory, and are intended to provide further explanation of the embodiments as claimed. [0044]An article of footwear generally includes two primary elements: an upper and a sole structure. The upper may be formed from a plurality of material elements (e.g., one or more layers of a textile, a natural fabric, a synthetic fabric, a knit, a woven material, a nonwoven material, a mesh, a leather, a synthetic leather, a polymer, a rubber, and a foam, etc.) stitched or adhesively bonded together to form a void on the interior of the footwear for comfortably and securely receiving a foot. More particularly, the upper forms a structure that extends over instep and toe areas of the foot, along medial and lateral sides of the foot, and around a heel area of the foot. The upper may also incorporate a lacing system to adjust fit of the footwear, as well as permitting entry and removal of the foot from the void within the upper. In addition, the upper may include a tongue that extends under the lacing system to enhance adjustability and comfort of the footwear, and the upper may incorporate a heel counter. For example, the upper may be a high tensile strength knit or mesh sockfit upper. [0045]Various material elements forming the upper may impart different properties to different areas of the upper. For example, textile elements may provide breathability and may absorb moisture from the foot, foam layers may compress to impart comfort, and leather may impart durability and wear-resistance. Consistent with an embodiment, therefore, 3D printed materials disposed on the upper during assembly of an article of footwear may thus be used to customize the properties of the upper and hence article of footwear. As disclosed throughout this disclosure, for example, 3D printed materials may be disposed on the upper to impart customized material properties such as increased strength, rigidity, support, flexibility, abrasion resistance, or variations thereof, based on desired material properties for specific portions of the upper and the article of footwear as a whole. [0046]A sole structure is secured to a lower portion of the upper so as to be positioned between the foot and the ground. In athletic footwear, for example, the sole structure includes a midsole and an outsole. The midsole may be formed from a polymer foam material that attenuates ground reaction forces (i.e., provides cushioning) during walking, running, and other ambulatory activities. The midsole may also include cushions, such as fluid-filled chambers, plates, moderators, or other elements that further attenuate forces, enhance stability, or influence the motions of the foot, for example. The outsole forms a ground-contacting element of the footwear and is usually fashioned from a durable and wear-resistant rubber material that includes texturing to impart traction. The sole structure may also include a sockliner positioned within the upper and proximal to a lower surface of the foot to enhance footwear comfort. [0047]Consistent with an embodiment, an article of footwear 10, throughout this disclosure referred to simply as footwear 10, is depicted in FIGS. 1-3 as including an upper 20 and a sole structure 30. For reference purposes, footwear 10 may be divided into three general regions: a forefoot region 11, a midfoot region 12, and a heel region 13. Footwear 10 also includes a lateral side 14 and a medial side 15. Forefoot region 11 generally includes portions of footwear 10 corresponding with the toes and the joints connecting the metatarsals with the phalanges. Midfoot region 12 generally includes portions of footwear 10 corresponding with the arch area of the foot, and heel region 13 corresponds with rear portions of the foot, including the calcaneus bone. Lateral side 14 and medial side 15 extend through each of forefoot region 11, midfoot region 12, and heel region 13 (as seen in FIG. 3) and correspond with opposite sides of footwear 10 that are separated by a lace region 16, which extends along a length of footwear 10. Forefoot region 11, midfoot region 12, heel region 13, lateral side 14, and medial side 15 are not intended to demarcate precise areas of footwear 10. Rather, they are intended to represent general areas of footwear 10 to aid in this description. In addition to footwear 10, forefoot region 11, midfoot region 12, heel region 13, lateral side 14, and medial side 15 may also be applied to upper 20, sole structure 30, and individual elements thereof. [0048]Upper 20 is secured to sole structure 30 and extends between the foot and the ground when footwear 10 is worn. The primary elements of sole structure 30 are a midsole 31, an outsole 32, and a sockliner 33. A lower surface of upper 20 is secured to midsole 31, and midsole 31 may be formed from a compressible polymer foam element (e.g., a polyurethane or ethylvinylacetate foam) that attenuates ground reaction forces (i.e., provides cushioning) when compressed between the foot and the ground during walking, running, or other ambulatory activities. In further configurations, midsole 31 may incorporate fluid-filled chambers, plates, moderators, or other elements that further attenuate forces, enhance stability, or influence the motions of the foot, or midsole 31 may be primarily formed from a fluid-filled chamber. Outsole 32 is secured to a lower surface of midsole 31 and may be formed from a wear-resistant material (e.g., a polymer or a rubber) that is textured to impart traction and provide durability. Sockliner 33 is located within upper 20 and is positioned to extend under a lower surface of the foot. Although this configuration for sole structure 30 provides an example of a sole structure that may be used in connection with upper 20, a variety of other conventional or nonconventional configurations for sole structure 30 may also be utilized. Accordingly, the structure and features of sole structure 30 or any sole structure utilized with upper 20 may vary considerably. [0049]Upper 20 may be stitched or bonded together to form a void within footwear 10 for receiving and securing a foot relative to sole structure 30. The void is shaped to accommodate the foot and extends along the lateral side of the foot, along the medial side of the foot, over the foot, around the heel, and under the foot. Access to the void is provided by an ankle opening 50 located in at least heel region 13. [0050]Lace 40 may extend through various lace apertures 41 and permits the wearer to modify dimensions of upper 20 to accommodate the proportions of the foot. More particularly, lace 40 may permit the wearer to tighten upper 20 around the foot, and lace 40 may permit the wearer to loosen upper 20 to facilitate entry and removal of the foot from the void (i.e., through ankle opening 50). As an alternative to lace apertures 41, upper 20 may include other lace-receiving elements, such as loops, eyelets, and D-rings. In addition, upper 20 may include a tongue 60 that extends between ankle opening 50 and lace 40 to enhance the comfort and performance of footwear 10. In some configurations, upper 20 may incorporate a heel counter that limits heel movement in heel region 13 or a wear-resistant toe guard located in forefoot region 11. In some cases, upper 20 may include a plurality of lace apertures 41, including evenly spaced apertures on lateral side 14 of lace region 16 extending from ankle opening 50 to forefoot region 11. Similarly, upper 20 may include a symmetrical, evenly spaced group of lace apertures 41 on medial side 14 of lace region 16. Lace 40 may be interwoven though apertures 41 in any suitable configuration. [0051]Still referring to FIGS. 1-3, upper 20 includes regions or patterns of printed material 70. Consistent with an embodiment, printed material 70 may be formed by direct 3D printing and curing of material onto upper 20 in any desired pattern, shape, thickness, or coverage. Printing and curing of printed material 70 will be described in greater detail hereinbelow. As shown in FIGS. 1-3, printed material 70 is depicted in an exemplary manner as a pattern of interconnected strips and loops of predetermined thickness attached to various portions of upper 20 to provide structural support and/or aesthetic improvements to footwear 10. Various portions of printed material 70 may be interconnected, but may also not be interconnected. Consistent with an embodiment, printed material 70 is adhered or otherwise bonded to upper 20, may be at least partially absorbed into a surface of upper 20, and may be formed in one or more contiguous or disjointed layers on upper 20. Each of these features will be described in greater detail below. [0052]Consistent with an embodiment, printed material 70, also referred to herein as “three-dimensional material,” may be made of a material that includes an ink, a resin, an acrylic, a polymer, a thermoplastic material, a thermosetting material, a light-curable material, or combinations thereof. Also consistent with an embodiment, printed material 70 may be formed from printing of one or more layers in a sequence of depositions of material to any desired thickness, and may also include a filler material to impart a strengthening or aesthetic aspect to printed material 70. For example, the filler material may be a powdered material or dye designed to impart desired color or color patterns or transitions, metallic or plastic particles or shavings, or any other powdered mineral, metal, or plastic, and may customize the hardness, strength, or elasticity of printed material 70 depending on desired properties. Filler material may be premixed with printed material 70 prior to printing, or may be mixed with printed material 70 during printing onto upper 20. Consistent with an embodiment, printed material 70 may thus be a composite material. [0053]FIGS. 4 and 5 show a perspective cutaway view and exploded perspective cutaway view, respectfully, of section 4 of footwear 10 shown in FIG. 3, including sole structure 30 comprising outsole 32, midsole 31, and sockliner 33. It will be appreciated that some illustrated portions of sole structure 30 may be optional, and certain portions may be omitted in some embodiments. Alternatively, sole structure 30 may optionally comprise additional layers. For example, sole structure 30 may additionally comprise one or more layers of material (not shown) printed in accordance with disclosed embodiments. Such materials may comprise, for example, one or more printed polyurethane layers to form an enclosed region of air or other gas or fluid in one or more regions of sole structure 30, thus providing an enclosed cushioning region (not shown) in footwear 10. [0054]As shown in FIGS. 4 and 5, footwear 10 also includes upper 20 and tongue 60, upper 20 being attached to sole structure 30 as previously described. Consistent with an embodiment, printed material 70 may be adhered or bonded on or in an exterior surface of upper 20. It will be appreciated that some illustrated elements of printed material 70 may vary in appearance. Alternatively, other additional elements may be included. For example, printed material 70 may comprise one or more additional layers to constitute material of any desired thickness, which will be described in greater detail below. [0055]A method for making an article of apparel or footwear may include provisions for direct 3D printing onto the article. Consistent with an embodiment, FIG. 6 shows an exemplary system 80 for 3D printing directly onto a fabric upper, such as, for example, upper 20 shown in any of FIGS. 1-5. System 80 may include 3D printer device 81, computer/workstation 82, print server 83, and optional switching device 84. 3D printer device 81, computer 82, print server 83, and switching device 84 may be in communication and/or networked as shown in FIG. 6. One of ordinary skill in the art will recognize that portions of system 80 may be omitted in some embodiments. [0056]Still referring to FIG. 6, computer 82 may be in direct communication with 3D printer device 81 and print server 83 via switching device 84. For example, print server 83 may be in direct communication with 3D printer device 81 and switching device 84, and switching device 84 may likewise be in direct communication with 3D printer device 81 and print server 83. Print server 83 may include a second nontransitory computer-readable medium encoded with a second computer program product loadable into a memory of print server 83 and include second software code portions for instructing 3D printer device 81 to print directly onto upper 20 through a sequence of printing steps to produce a 3D result of printed material 70 from CAD representation 89 on computer 82. Consistent with an embodiment, one of ordinary skill will understand that system 80 may require both computer 82 and print server 83, or may require just one of computer 82 and print server 83. [0057]Consistent with an embodiment, computer 82 may comprise a central processing device 85, viewing interface 86 (e.g., a monitor or screen), input devices 87 and 88 (e.g., keyboard and mouse), and software for designing a computer-aided design (“CAD”) representation 89 of a printing output designed for upper 20. The term “computer,” as used throughout the disclosure, means a single computer, the partial computing resources of a computer, or two or more computers communicating with each other. Computer 82 may thus include a first nontransitory computer-readable medium in central processing device 85 encoded with a first computer program product loadable into a memory of computer 82 and include first software code portions for storing a 3D pattern for printing directly onto upper 20. Consistent with an embodiment, computer 82 may be used to prepare a CAD representation 89 for any desired printed pattern or chemistry for printed material 70 on upper 20. [0058]As shown in FIG. 7, 3D printer device 81 comprises a tray 90 for receiving upper 20 for printing. 3D printer device 81 also may comprise at least one printhead 92, printhead maneuverability assembly 94, and lid 96. Printing material to be ejected from at least one printhead 92 may be stored or supplied in compartment 98. Consistent with an embodiment, FIG. 7 illustrates a completed pattern of printed material 70 printed on upper 20, in accordance with exemplary CAD representation 89 shown in FIG. 6, and implemented by print server 83 and/or computer 82. Printhead 92 may also include, for example, a UV light producing mechanism for curing printed material 70 upon printing by printhead 92 as printhead 92 is moved over upper 20 via printhead maneuverability assembly 94. Upon completion of printing onto upper 20, lid 96 may be opened and upper 20 may be removed from 3D printer device 81. [0059]Contrary to what is known in the art, embodiments of the disclosed methods do not require a hydrophobic or otherwise non-wetting surface on which to print. One of ordinary skill in the art will understand that known 3D printing systems require a hydrophobic sheet or release layer on a tray or substrate prior to printing/building of a 3D object. Such a hydrophobic sheet or release layer may be preexisting on the tray or substrate, or may be a printed hydrophobic material provided by the 3D printing system itself. In known 3D printing systems, the required hydrophobic sheet or release layer prevents wetting of printed material onto the tray or substrate during printing/building of the 3D object and thus permits removal of the 3D object from the tray or substrate upon completion of printing. Consistent with an embodiment, however, 3D printer device 81 does not require a hydrophobic or otherwise non-wetting surface on which to print, because 3D printing is accomplished directly onto a material (e.g., upper 20) placed on tray 90. Upper 20, if an exemplary fabric material, may also be hydrophilic. That is, wetting and adhering/bonding/curing of printed material 70 to upper 20 is desirable. After printing, upper 20 may be removed from tray 90 with printed material 70 adhered/bonded/cured to upper 20, and without concern for adhesion of upper 20 or printed material 70 to tray 90. [0060]Contrary to what is known in the art, embodiments of the disclosed methods also do not require a perfectly or near-perfectly flat substrate surface on which to print. One of ordinary skill in the art will understand that known 3D printing systems require a perfectly or near-perfectly flat substrate surface on which to print in order to allow the systems to print/build 3D objects on a planar surface. Consistent with an embodiment, however, upper 20—even if laid substantially flat inside 3D printer device 81 on tray 90—may still have an uneven surface due to either the knit or weave of its fabric, or irregular surface topology in general due to the need for subsequent working and assembly steps. Consistent with an embodiment, 3D printer device 81 may account for surface irregularities of upper 20, and compensate for any such irregularities by adjusting one or more of the distance between printhead 92 and upper 20, and the size/rate/distribution of material ejected from printhead 92 during printing onto upper 20. That is, printing may occur directly onto a surface of upper 20, such that upper 20 may be subsequently removed from 3D printer device 81 without any concern for surface irregularities in upper 20. [0061]For example, with reference to FIGS. 8 and 9, known 3D printing techniques require printing on flat substrate 100 having a release layer 102 placed/formed/printed thereon. To prevent printed object 104 from adhering to substrate 100, release layer 102 is interspersed therebetween. Release layer 102 could be a wax paper, for example, or a layer of hydrophobic printed material to facilitate removal of printed object 104 from substrate 100. As shown in FIG. 9, removal of printed material 104 may thus be accomplished by removing release layer 102 from substrate 100 as shown by motion 106, followed by removal of printed material 104 from release layer 102 as shown by motion 108. Thus, known 3D printing techniques require both a flat surface on which to print, and a release layer to prevent adhesion of the printed material to the substrate after printing is complete. [0062]Contrary to what is known in the art, FIGS. 10 and 11, and likewise 12 and 13, illustrate a portion of a 3D printing technique consistent with an embodiment. For example, FIGS. 10 and 11 show a cross sectional view of upper 20 placed on tray 90. Upper 20 is depicted as comprising threads 22, which may be placed in different directions, although threads 22 could be configured in any manner, such as any density or thickness, to form upper 20. Printed material 70 may comprise one or more layers of material sequentially printed onto upper 20. Consistent with an embodiment, printed material 70 may be at least partially absorbed into a surface region 110 of upper 20 after printing and prior to curing. Partial absorption in surface region 110 of printed material 70 may aid in adhesion/bonding of printed material 70 to upper 20. FIGS. 12 and 13 likewise illustrate a perspective view of upper 20 placed on tray 90 and having printed material 70 printed thereon. [0063]As shown in FIGS. 11 and 13, and consistent with an embodiment, removal of upper 20 containing printed material 70 may be accomplished by simply lifting upper 20 away from tray 90, as shown by motion 115. Because printed material 70 is printed/deposited onto upper 20, and may be at least partially absorbed into a surface region 110, upper 20 may thus serve as a “substrate” such that there is no need for a release layer interspersed between upper 20 and printed material 70, or between tray 90 and upper 20. That is, wetting and adhering/bonding/curing of printed material 70 to upper 20 is desirable and accomplished. After printing, upper 20 may be removed from tray 90 with printed material 70 adhered/bonded/cured to upper 20, and without concern for adhesion of upper 20 or printed material 70 to tray 90. Consistent with an embodiment, a release layer may be optionally used, however unlikely, for example if upper 20 is so thin or contains a particularly low density of threads 22 such that portions of printed material 70 might pass between individual threads 22 of upper 20 and directly contact tray 90. [0064]Consistent with an embodiment, FIGS. 14-17 illustrate cross sectional views of a printing sequence of multiple 3D layers of printed material 70 on upper 20. For example, FIG. 14 illustrates first layer 71 of printed material 70 deposited onto upper 20. Printed material 70 may be ejected or otherwise emitted from printhead 120 via nozzle 122 in the form of droplets 124. One of ordinary skill in the art will recognize that the form of droplets 124 may vary depending on the actual material ejected or otherwise emitted from nozzle 122. Droplets 124 may thus be any viscosity liquid material, or even a semi-solid material. Consistent with an embodiment, droplets 124 may be any desired material or phase of material suitable for use in 3D printing system 80. [0065]Still referring to FIG. 14, in some embodiments, first layer 71 may be cured by UV light 126, however, in other embodiments, first layer 71 may be deposited without the need to cure the deposited material. Depending on the material used for printing of printed material 70, the material may be deposited in a liquid, semi-liquid, or otherwise gel-like or viscous phase. The material may then be solidified, at least partially, or cured, for various reasons, or to achieve desired properties, for example, to enhance durability, adhesion, or bonding of printed material 70 to upper 20. FIGS. 14-17 thus illustrate UV light 126 as an exemplary curing agent for use after deposition of printed material 70. One of ordinary skill in the art will understand that UV light 126 may be activated/applied either immediately after deposition of
返回