Interchangeable customizable hardware for pull mechanisms

公开(公告)号:
US10477968B2
公开(公告)日:
2019-11-19
申请号:
US15/359425
申请日:
2016-11-22
授权日:
2019-11-19
受理局:
美国
专利类型:
授权发明
简单法律状态:
失效
法律状态/事件:
未缴年费
IPC分类号:
A47B95/02 | B33Y50/02 | B33Y80/00 | E05B1/00
战略新兴产业分类:
-
国民经济行业分类号:
C2190 | C2110 | C2120 | C2130 | C2140
当前申请(专利权)人:
KNOCKOUT KNOBS LLC
原始申请(专利权)人:
KNOCKOUT KNOBS LLC
当前申请(专利权)人地址:
125 WEST 72ND STREET #3F, 10023, NEW YORK, NEW YORK
工商统一社会信用代码:
-
工商登记状态:
-
工商注册地址:
-
工商成立日期:
-
工商企业类型:
-
发明人:
MAIER, NANCY | GIBBONS, DANIEL | BROADWELL, JEREMY
代理机构:
LEASON ELLIS LLP
代理人:
-
摘要:
A pull assembly includes a base and a decorative insert which is rotatably mated to the base to allow for easy assembly and customization. The pully assembly can be formed by a process that includes the steps of: (a) forming a base by a first process; (b) receiving an image of a custom decorative insert that is intended to mate with the base to form the pull assembly; and (c) forming the custom decorative insert based on the received image and using an additive manufacturing process.
技术问题语段:
The patent text discusses the increasing popularity of adding hardware to barrier structures, such as furniture and doors, to make them easier to manipulate. This hardware can be in the form of knobs, handles, pulls, and levers. However, customization of the fixture is costly and time-consuming. Therefore, the technical problem is to provide a pull assembly that can be customized but is also more cost-effective.
技术功效语段:
The present invention relates to a pull mechanism for opening doors and drawers, which can be customized to reflect the aesthetics of the room or the user's personal touch. The pull mechanism includes a pull assembly that can be easily installed and removed, and can be customized to include decorative details and accents. The pull assembly includes a pull mechanism that can be securely attached to the barrier structure using fasteners. The pull mechanism is cost-effective and provides a personal touch to the room. The technical effect of the invention is to provide a pull assembly that can be customized while still maintaining its cost-effectiveness.
权利要求:
1. A pull assembly comprising: a base having a first portion that defines a first end and a stem that defines a second end, wherein the first portion includes at least one locking slot that has an arcuate shape; and an insert that has a first face that faces outward and includes decorative indicia and a second face that faces inwards and includes at least one locking pin, the locking pin being configured to be freely received within the locking slot and is movable to a locked position and the insert is securely coupled to the base by a friction fit being formed between the insert and the base; wherein the at least one locking slot has a first end and an opposing second end, wherein a width of the locking slot varies along the length thereof from the first end to the second end, wherein the at least one locking pin is initially received within the second end which has an enlarged width relative to the first end and in the locked position, the at least one locking pin is disposed at or proximate to the first end of the locking slot. 2. The pull assembly of claim 1, wherein there are at least two locking slots and at least two corresponding locking pins, each locking slot decreasing in a direction from the second end to the first end. 3. The pull assembly of claim 2, wherein the at least two locking slots are formed such that the second end of one locking slot is located closer to the first end of another locking slot such that the width of each locking slot narrows in the same circumferential direction. 4. The pull assembly of claim 1, wherein the base is formed of a first material and by a first process and the insert is formed of a second material and by a second process. 5. The pull assembly of claim 4, wherein the first material is different than the second material and the first process is different than the second process. 6. The pull assembly of claim 1, wherein the base comprises a cast metal structure and the insert comprises a metal structure formed by an additive manufacturing process. 7. The pull assembly of claim 1, wherein the at least one pin comprises a cylindrically shaped pin that has a diameter that is at least substantially equal to the width of the at least one locking slot at the first end of the at least one locking slot. 8. A pull assembly comprising: a base having a first portion that defines a first end and a stem that defines a second end, wherein the first portion includes at least one locking slot that has an arcuate shape; and an insert that has a first face that faces outward and includes decorative indicia and a second face that faces inwards and includes at least one locking pin, the locking pin being configured to be freely received within the locking slot and is movable to a locked position and the insert is securely coupled to the base by a friction fit being formed between the insert and the base; wherein the first portion comprises an annular shaped track that is connected to the stem by a plurality of struts that are disposed circumferentially about the stem. 9. The pull assembly of claim 8, wherein the annular shaped track includes an inner annular shaped portion and an outer annular shaped portion which is elevated relative to the inner annular shaped portion so as to form an annular shaped shoulder therebetween, wherein the insert is configured to rotatably seat within the annular shaped track. 10. The pull assembly of claim 9, wherein the at least one locking slot is formed in the inner annular shaped portion. 11. The pull assembly of claim 9, wherein each spoke is connected at a first end to an underside of the outer annular shaped portion and at a second end to an outer surface of the stem. 12. The pull assembly of claim 11, wherein the stem is open at both a first end and a second end that is closer to but spaced from the annular shaped track so as to elevate the annular shaped track relative to the stem. 13. The pull assembly of claim 9, wherein the insert includes a support portion and a decorative portion, wherein the support portion is configured to seat within the inner annular shaped portion and be constricted by the outer annular shaped portion. 14. The pull assembly of claim 13, wherein a thickness of the support portion is at least substantially equal to a height of the annular shaped shoulder. 15. The pull assembly of claim 13, wherein the support portion comprises a solid structure and the decorative portion comprises a cutout formed in the disc. 16. A pull assembly comprising: a base having a first portion that defines a first end and a stem that defines a second end, wherein the first portion includes at least one locking slot that has an arcuate shape; and an insert that has a first face that faces outward and includes decorative indicia and a second face that faces inwards and includes at least one locking pin, the locking pin being configured to be freely received within the locking slot and is movable to a locked position and the insert is securely coupled to the base by a friction fit being formed between the insert and the base; wherein the first portion comprises an annular shaped track that is connected to and spaced from the stem, the insert being rotatably coupled to the annular shaped track such that the insert rotates to a locked position, the annular shaped track including a recessed landing on which the insert sits and rotates, while a perimeter lip of the first portion circumferentially surrounds and is raised relative to the annular shaped track and also circumferentially surrounds the insert.
技术领域:
[0002]The present invention relates to decorative, customized hardware and more particularly, relates to decorative, customized pull mechanisms (e.g., knobs, handles, and other pull structures) for opening doors and drawers, such as cabinet doors, drawers, and the like, and can further be implemented in hook constructions.
背景技术:
[0003]It is known in the art and has become increasingly more popular to affix hardware to a barrier structure (e.g., furniture, wall, door, window, etc.) and the like to facilitate manipulation (e.g., opening and closing or hanging or holding back) of storage doors and drawers that are part thereof. Such hardware can be in the form of knobs, handles, pulls, and levers affixed to the face of a barrier structure (e.g., a piece of furniture or door or window) to provide a means for a user to move the barrier structure via the movement of the pull mechanism. Pulls for opening drawers and doors may include knobs and handles. As used herein, the term “knob” is used to describe a pull mechanism that has a single point of contact with the barrier structure and the term “handle” is used to describe a pull mechanism that has multiple points of contact with the barrier structure. Kitchen, bathrooms, and other environments often include pulls for opening and closing cabinet doors, drawers, or the like. Additional hardware that is commonly used is hooks to match the pulls. Hooks are often used in bathrooms, kitchens and mudrooms to hang items. [0004]Pulls can aesthetically enhance the surrounding environments. As an example, some decorative pulls include intricate details and accents. Such decorative pulls are especially common in household, hospitality, commercial, office and rental environments. For example, incorporating more decorative pulls into a new kitchen design enhances or changes the new kitchen's aesthetic appeal. Similarly, replacing pulls in an existing kitchen with newer pulls can update the look of the kitchen, the kitchen's theme, or otherwise change the kitchen aesthetics. [0005]Pulls typically secure to doors or drawer faces with one or more fasteners (screws). In such an arrangement, a screw is typically extended through a door or drawer face and the knob is screwed onto the screw while the head of the screw is held stationary to securely affix the pull to the door or drawer face (the barrier structure). In a hook, the stem and screw affix to the wall or molding. [0006]Customization of the fixture is desired by many people to provide a personal touch to the room; however, customization increases the time required to manufacture the parts and also increases costs. There is therefore a need to provide a pull assembly that can be customized (e.g., to reflect a business logo) and the appearance thereof can be easily altered, but at the same time is more cost effective.
发明内容:
-
具体实施方式:
[0038]An example structure, such as a cabinet or a dresser or similar furniture, will typically have doors or drawers which are flush with the structure when closed. To facilitate opening and closing the door or drawers, a pull is typically needed. As described herein, a pull can come in a number of different forms including pull knobs and pull handles, etc. [0039]FIGS. 1-4 illustrate a pull assembly (mechanism) 100 according to a first embodiment of the present invention. The illustrated pull assembly 100 is in the form of a knob pull that includes a base (pull body) 110 and a decorative insert (pull fascia/fascia member) 170. The base 110 includes an elongated shaft 112 that has an open first end 114 and an opposite closed second end 116. The shaft 112 can be formed to have any number of different shapes, including but not limited to, a cylinder, an oval, a square, triangle, etc., and to have any number of differences sizes and lengths, etc. As discussed herein, the shaft 112 is at least partially hollow to allow for the shaft 112 to be secured to a target surface using a fastener (e.g., a screw) or the like. [0040]At the second end 116, a flange member 120 is formed and extends radially outward from the shaft 112. The illustrated flange member 120 has a circular shape to allow for rotation of the decorative insert 170 relative to the base 110. The details and construction of base 110 are merely exemplary and not limiting of the scope of the present invention. The flange member 120 is therefore defined by a diameter which is greater than a diameter of the cylindrical shaped shaft 112. The flange member 120 includes at least one and preferably, a plurality of locking slots 160 that are formed in the flange member 120. [0041]As described herein, the circular shaped flange member 120 is received within a complementary circular shaped recess along one face of the decorative insert 170 to allow rotation of the decorative insert 170 relative to the base 120 as shown in FIG. 4. The shape of the body of the decorative insert in which the circular shaped recess is formed can take any number of different forms. Thus, the body of the flange member 120 seats within the complementary recess formed in the underside of the decorative insert 170 to allow for rotation of the decorative insert 170 relative to the flange member 120 which permits, as described below, a secure coupling between a coupling (locking member) associated with the underside of the decorative insert 170. [0042]Each locking slot 160 is defined by a pair of closed ends 162, 164. The locking slot 160 has an arcuate shape and the width of the locking slot 160 varies over the length of the locking slot 160 from the end 162 to the end 164. In particular, the width of the locking slot 160 progressively increases in the direction from the end 162 to the end 164. In other words, the end 162 represents a narrow end of the slot and the end 164 represents a wider end of the slot 160. The ends 162, 164 can be curved ends as shown. When more than one slot 160 is formed in the flange member 120, the slots 160 can be located at least partially opposite one another. For example, the illustrated embodiment, the flange member 120 includes two slots 160 that are disposed opposite one another. [0043]Since the second end 116 of the shaft 112 is closed, the center of the flange member 120 is solid so as to define a closed end that can seat in the recess formed in the underside of the decorative insert. [0044]The shaft 112 includes an internal bore which is threaded and configured to receive a fastener (e.g., a screw) for attaching the base 110 to a structure, such as a face of a piece of furniture, such as a cabinet door or cabinet drawer (not shown). However, it will be understood that the shaft 112 is not limited to having a threaded bore construction and other means for attaching the shaft 112 to the structure/fixture (e.g., cabinet door) can be used. For example, a bore without threads can be formed in the shaft 112 to receive a fastener or connector for attaching the base 110 to the structure/fixture. In addition and according to other embodiments, the shaft 112 can be completely solid and is attached to the structure/fixture using other means, such as a fastener that connects to the shaft. It will be understood that the above described fastening techniques and well as other fastening techniques can be used with respect to any of the bases described herein and thus, the bases are not limited to having a threaded bore as the means for attaching the pull assembly to the structure/fixture. [0045]The base 110 can be formed of any number of suitable materials including but not limited to metal or plastic or wood and can be formed using any number of conventional techniques, including casting, molding, injection molding, 3D printing, additive manufacturing, etc. [0046]The decorative insert (pull fascia/fascia member) 170 is configured to mate with the base 110 to provide the assembled pull mechanism. The decorative insert 170 has a first face or surface 172 and an opposite second face or surface 174. In the assembled state, the first surface 172 faces outward, while the second surface 174 faces the base 110. Similar to the base 110, the decorative insert 170 can come in any number of different shapes, including but not limited to, a circle, an oval, a square, triangle, etc. and can be formed from any number of different materials. In the illustrated embodiment, the decorative insert 170 is in the form of a disk (circular shape). The decorative insert 170 can be a completely solid structure as shown or, as in other embodiments illustrated herein, the decorative insert 170 can include one or more cutouts. [0047]The first surface 172 can include decorative indicia 180 (ornamental (decorative) features) for display. The decorative indicia 180 can consist of a wide array of different elements that provide different visual appearances. For example, the decorative indicia 180 can depict an object or represent an abstract work or present a textured pattern or can be in the form of letters and/or numbers or a logo, or a combination of one or more different elements, etc. The decorative indicia 180 can include both raised structures (elements) and recessed structures (elements) formed along the first surface 172. The decorative indicia 180 can also include more than one color. The exemplary insert 170 of FIGS. 1-4 includes decorative dragonfly artwork 180. In the illustrated embodiment, the dragonfly artwork 180 is contained within the outer perimeter of the insert 170. In other words, no part of the dragonfly artwork 180 extends beyond the circumferential perimeter of the insert 170. However, it will be appreciated that in some embodiments, one or more portions of the decorative indicia 180 (e.g., the illustrated dragonfly artwork) may extend beyond the perimeter of the insert 170. For example, tips of the wings of the dragonfly may extend beyond the perimeter of the insert 170. [0048]The second face or surface 174 includes a means for releasably securing the decorative insert 170 to the base 110 and in particular, the second face 174 includes at least one locking pin 190 that extends outwardly therefrom. For example, the locking pin 190 can be in the form of a protrusion (e.g., having a cylindrical body) that extends outwardly from the second face 174. The locking pin 190 can be formed at a right angle relative to the second face 174. The locking pin 190 can have a uniform construction along its length or it can have a non-uniform construction. More specifically, a distal end of the locking pin 190 can include an enlarged portion 195 as shown in FIG. 17. The enlarged portion 195 can be dome shaped and have a width greater than the proximal portion (which has a cylindrical shape) of the locking pin 190 (See, FIG. 17). [0049]Each locking pin 190 can be formed in the recess (e.g., circular shaped recess) that is formed in the underside of the decorative insert 170. In the illustrated embodiment, there are two locking pins 190 formed in the circular shaped recess formed in the underside of the decorative insert 170. [0050]The locking pin 190 is shaped and sized so as to be capable of being receiving within the locking slot 160 and be moved therein from the end 162 to the end 164. The width of the locking slot 160 and the width of the locking pin 190 are selected such that the locking pin 190 can be freely and easily received in the end 162 of the slot 160; however, as the insert 170 is rotated relative to the base 110, the locking pin 190 travels within the locking slot 160 toward the end 164. As the locking pin 190 travels within the slot 160, the locking pin 190 frictionally contacts the sides of the slot 160 and a friction fit is formed between the locking pin 190 and the locking slot 160. When the locking pin 190 is disposed at the end 164 of the slot 160, the locking pin 190 is securely held by the base 110, thereby securely (yet releasably) locking the insert 170 to the base 110. [0051]The curved nature of the locking slot 160 accommodates rotation of the insert 170 relative to the base 110 and thus, the pull assembly 100 of the present invention is designed to both lock and unlock by rotating the insert 170 relative to the base 110 (which is stationary due to it being fastened to the barrier structure). [0052]The mating relationship between the insert 170 and the base 110 can thus be described as being one of a male/female type with the locking slots 160 representing the female component and the locking pins 190 representing the male component. [0053]To release the decorative insert 170 from the base 110, the process is reversed and the decorative insert 170 is rotated in the opposite direction to apply a force that overcome the friction fit between each locking pin 190 and the second end 164 of the slot 160. Once each locking pin 190 reaches the first end 162, the decorative insert 170 can be lifted and removed from the base 110. Removal of the decorative insert 170 may be desired in certain situations, such as repair or replacement of the decorative insert 170 with a new one. [0054]The decorative insert 170 can be formed of any number of different materials including but not limited to metals and plastics or even wood. As described herein, in one embodiment the decorative insert 170 is formed of a different material compared to the base 110 and/or is formed using a different process (technique) compared to the process used to make the base 110. [0055]FIGS. 5-8 illustrate a pull assembly 200 according to a second embodiment. The pull assembly 200 is similar to the pull assembly 100 and therefore, like elements are numbered alike. In particular, the pull assembly 200 includes the base 110 and utilizes an insert 210 that is similar to insert 170. The decorative features 220 of the insert 210 comprise a logo, such as a corporate logo. Alternatively, the decorative features 220 can be in the form of a person's initials. The insert 210 also includes at least one locking pin 190 and preferably a plurality of locking pins 190 that are received in the locking slots 160 as described above. [0056]Despite the fact that the insert 210 has a triangular shape, the locking pins 190 are positioned on the bottom surface thereof and spaced apart to accommodate reception in the complementary locking slots 160 and travel therein due to rotation of the insert 210. In other words and as shown in FIG. 8, the underside of the insert 210 has a circular shaped recess (similar to the prior embodiment) into which the flange 120 seats. This allows rotation of the triangular shaped insert 210 relative to the base 110. Each locking pin 190 is formed in the circular shaped recess in the underside of the insert 210. [0057]FIGS. 9-12 illustrate a pull assembly 300 according to a third embodiment. The pull assembly 300 is similar to the pull assemblies 100, 200 and therefore, like elements are numbered alike. In particular, the pull assembly 300 includes the base 110 and utilizes an insert 310 that is similar to insert 170. In the illustrated embodiment, the decorative insert 310 is in the form of a square and the top surface thereof can include decorative indicia 320 (such as letters or a graphic representation, etc., or an artistic pattern or work, etc.). In the illustrated embodiment, the decorative insert 310 includes a raised feature 311 in the center thereof and more particularly, a raised hemisphere is located in the center of the outwardly facing surface of the insert 310. The insert 310 also includes at least one locking pin 190 and preferably a plurality of locking pins 190 that are received in the locking slots 160 as described above. [0058]Despite the fact that the insert 310 has a square shape, the locking pins 190 are positioned within the circular shaped recess formed in the underside of the bottom surface thereof and spaced apart to accommodate reception in the complementary locking slots 160 and travel therein due to rotation of the insert 310. As in the prior embodiments, the flange member 120 seats within the circular shaped recess in the underside of the insert 310. [0059]In the embodiments of FIGS. 1-12, the decorative inserts are solid structures and more particularly, are completely solid structures that have decorative (ornamental) features formed on the outer surface that faces the user. However, other constructions are possible as discussed herein. [0060]As described herein, the decorative insert component of the pull mechanism represents the component that is customizable, while the base component can be mass produced and is preferably not customized. As a result, the base 110 and the complementary decorative insert can be formed using two different processes and more particularly, the base 110 can be formed using a process that is more suited for mass production and cost savings, while the decorative insert can be formed using a process that is more suited for ease of customization. [0061]The base 110 can be formed using a number of suitable methods disclosed herein. For example, the base 110 can be formed of a metal and formed using a suitable technique, such as a metal casting process. It will be appreciated that this is merely one type of process used to make a metal part having a fixed shape/dimensions, such as the base 110. Alternatively, if the base 110 is formed of a plastic, it can be made using a molding process. [0062]The decorative inserts disclosed herein can be formed using traditional and suitable methods that lend themselves to producing customized parts. For example, in one embodiment, the decorative insert is formed of a different material than the base 110. For example, the decorative insert can be formed of a plastic material (polymeric material), while the base can be formed of a metal. [0063]One particularly suitable technique for manufacturing the customized decorative insert is an additive manufacturing process. Additive manufacturing or 3D printing is a process of making three dimensional solid objects from a digital file. The creation of a 3D printed object is achieved using additive processes. In an additive process, an object is created by laying down successive layers of material until the entire object is created. Each of these layers can be seen as a thinly sliced horizontal cross-section of the eventual object. [0064]The additive manufacturing process starts with making a virtual design of the object you want to create. This virtual design is made in a CAD (Computer Aided Design) file using a 3D modeling program (for the creation of a totally new object) or with the use of a 3D scanner (to copy an existing object). A 3D scanner makes a 3D digital copy of an object. 3D scanners use different technologies to generate a 3d model such as time-of-flight, structured/modulated light, volumetric scanning and many more. [0065]To prepare a digital file for printing, the 3D modeling software “slices” the final model into hundreds or thousands of horizontal layers. When the sliced file is uploaded in a 3D printer, the object can be created layer by layer. The 3D printer reads every slice (or 2D image) and creates the object, blending each layer with hardly any visible sign of the layers, with as a result the three dimensional object. [0066]There are several ways to print and all those available are additive, differing mainly in the way layers are built to create the final object. Some methods use melting or softening material to produce the layers. Selective laser sintering (SLS) and fused deposition modeling (FDM) are the most common technologies using this way of printing. Another method of printing is when we talk about curing a photo-reactive resin with a UV laser or another similar power source one layer at a time. The most common technology using this method is called stereolithography (SLA). [0067]Since 2010, the American Society for Testing and Materials (ASTM) group “ASTM F42—Additive Manufacturing”, developed a set of standards that classify the Additive Manufacturing processes into 7 categories according to Standard Terminology for Additive Manufacturing Technologies. These seven processes are:[0068]1. Vat Photopolymerisation[0069]2. Material Jetting[0070]3. Binder Jetting[0071]4. Material Extrusion[0072]5. Powder Bed Fusion[0073]6. Sheet Lamination[0074]7. Directed Energy Deposition [0075]The main considerations in choosing a machine are generally speed, cost of the 3D printer, cost of the printed prototype, cost and choice of materials, and color capabilities. [0076]Printers that work directly with metals are expensive. In some cases, however, less expensive printers can be used to make a mold, which is then used to make metal parts. [0077]The following table depicts the various techniques and materials that can be used as part of an additive manufacturing process. [0078]TypeTechnologiesMaterialsExtrusionFused deposition modelingThermoplastics (e.g. PLA, ABS, HIPS, Nylon),(FDM) or Fused FilamentHDPE, eutectic metals, edible materials, RubberFabrication (FFF)(Sugru), Modeling clay, Plasticine, RTV silicone,Porcelain, Metal clay (including Precious MetalClay)RobocastingCeramic materials, Metal alloy, cermet, metalmatrix composite, ceramic matrix compositeWireElectron Beam FreeformAlmost any metal alloyFabrication (EBF3)GranularDirect metal laser sinteringAlmost any metal alloy(DMLS)Electron-beam meltingAlmost any metal alloy including Titanium alloys(EBM)Selective laser meltingTitanium alloys, Cobalt Chrome alloys, Stainless(SLM)Steel, AluminiumSelective heat sinteringThermoplastic powder(SHS)[24]Selective laser sinteringThermoplastics, metal powders, ceramic powders(SLS)Powder bed andPlaster-based 3D printingPlasterinkjet head 3D(PP)printingLaminatedLaminated objectPaper, metal foil, plastic filmmanufacturing (LOM)LightStereolithography (SLA)photopolymerpolymerisedDigital Light ProcessingPhotopolymer(DLP) [0079]It will also be appreciated that other manufacturing processes can be used to make the customized decorative inserts of the present invention after the custom design is generated after a consumer's request. [0080]FIGS. 13-17 illustrate a pull assembly 400 according to a fourth embodiment. The pull assembly 400 is similar to the pull assemblies described above and therefore, like elements are numbered alike. In particular, the pull assembly 400 includes a base 410 and a decorative insert 500. In the illustrated embodiment, the base 410 includes an elongated shaft 412 and the base has an open first end 414 and an opposite open second end 416. The shaft 412 can be formed to have any number of different shapes, including but not limited to, a cylinder, an oval, a square, triangle, etc. [0081]The shaft 412 includes an internal bore which is threaded and configured to receive a fastener (e.g., a screw) for attaching the base 410 to a structure, such as a face of a piece of furniture, such as a cabinet door or cabinet drawer (not shown). [0082]The base 410 includes a plurality of struts 420 each of which extends radially outward from the shaft 412 and has a distal end that connects to a support member (e.g., a ring) 430. In the illustrated embodiment, in which the shaft 412 has a cylindrical shape; the struts 420 are disposed circumferentially about the shaft 412. The struts 420 are spaced from one another and in the illustrated embodiment, a proximal end of each strut 420 is connected to the shaft 412 at or near the open first end 414 of the shaft 412. Each strut 420 can be linear in shape or it can be curved along its length. The distal end of each strut 420 preferably is attached to an underside of the support member 430. In the illustrated embodiment, the support member 430 is in the form of an annular structure (ring) that defines the end 416 of the base 410. [0083]The support member 430 can have two distinct sections, namely, an outer section 440 and an inner section 450 that is located inside of the outer section 440. When, as illustrated, the support member 430 comprises an annular (ring shaped) structure, the outer section 440 comprises a first ring having a first diameter and an inner section 450 comprises a second ring having a second diameter that is less than the first diameter. The inner section 450 is recessed relative to the outer section 440 and therefore, a shoulder (e.g., a right angle shoulder) is formed between the inner and outer sections 450, 440. Top surfaces of each of the outer section 440 and the inner section 450 can be planar surfaces as shown. [0084]In the illustrated embodiment, the distal ends of the struts 420 are coupled to the underside of the outer section 440. [0085]The inner section 450 includes at least one and preferably, a plurality of locking slots 460 (that are similar to locking slots 160). Each locking slot 460 is formed entirely within the inner section 450 and is thus recessed relative to the outer section 440. Each locking slot 460 is defined by a pair of closed ends 462, 464. The locking slot 460 has an arcuate shape and the width of the locking slot 460 varies over the length of the locking slot 460 from the end 462 to the end 464. In particular, the width of the locking slot 460 progressively increases in the direction from the end 462 to the end 464. In other words, the end 462 represents a narrow end of the slot and the end 464 represents a wider end of the slot 460. The ends 462, 464 can be curved ends as shown. When more than one slot 460 is formed, the slots 460 can be located at least partially opposite one another. For example, the illustrated embodiment, the inner section 450 includes four slots 460 that are arranged in two pairs that are disposed opposite one another. [0086]The slots 460 are also arranged such that the narrow ends 462 face in the same circumferential direction in that, as shown, the narrow ends 462 are located counterclockwise to the wider ends 464. It will also be understood that the opposite is true in that the narrow ends 462 can be located clockwise to the wider ends 464. [0087]The base 410 can be thought of as having a basket type construction due to the presence and orientation of the spaced apart struts 420. Since the outer section 440 and inner section 450 are concentric with one another, the center of the shaft 412 is located at a center point of the outer section 440 and inner section 450. [0088]The decorative insert 500 is similar to the decorative insert 170 in that it is intended to be removably mated to a complementary base, in this case, the base 410. Unlike the decorative insert 170, the decorative insert 500 is not a completely solid structure, but instead, the insert 500 includes one or more cutouts that define the decorative nature (ornamental features) of the insert 500. [0089]In FIGS. 13-15, the decorative insert 500 also depicts a dragonfly image; however, unlike the completely solid insert 170, the insert 500 is defined by an outer perimeter support 510 to which the decorative indicia 520 (e.g., dragonfly) is attached and there are open spaces (through holes) between the decorative indicia 520 and the outer perimeter support 510. The outer perimeter support 510 is configured to mate with the base 410 and more specifically, the outer perimeter support 510 is sized and shaped to seat against the inner section 450. The illustrated outer perimeter support 510 can thus be in the form of a ring (annular shaped member) that seats directly on the inner surface 450. [0090]As with the previous embodiments, an underside of the outer perimeter support 510 includes a means for releasably securing the decorative insert 500 to the base 410 and in particular, the underside of the outer perimeter support 510 includes at least one locking pin 190 that extends outwardly therefrom. For example, the locking pin 190 can be in the form of a protrusion (e.g., having a cylindrical body) that extends outwardly from a second (bottom) face. The locking pin 190 can be formed at a right angle relative to the underside of the outer perimeter support 510. The locking pin 190 can have a uniform construction along its length or it can have a non-uniform construction as shown. More specifically, a distal end of the locking pin 190 can include an enlarged portion 195. In the illustrated embodiment, the enlarged portion 195 is dome shaped and has a width greater than the proximal portion (which has a cylindrical shape) of the locking pin 190. [0091]The locking pin 190 is shaped and sized so as to be capable of being receiving within the locking slot 460 and be moved therein from the end 462 to the end 464. The width of the locking slot 460 and the width of the locking pin 190 are selected such that the locking pin 190 can be freely and easily received in the end 462 of the slot 460; however, as the insert 500 is rotated relative to the base 410, the locking pin 190 travels within the locking slot 460 toward the end 464. As the locking pin 190 travels within the slot 460, the locking pin 190 frictionally contacts the sides of the slot 460 and a friction fit is formed between the locking pin 190 and the locking slot 460. When the locking pin 190 is disposed at the end 464 of the slot 460, the locking pin 190 is securely held by the base 410, thereby securely (yet releasably) locking the insert 500 to the base 410. [0092]The curved nature of the locking slot 460 accommodates rotation of the insert 170 relative to the base 410 and thus, the pull assembly 100 of the present invention is designed to both lock and unlock by rotating the insert 500 relative to the base 410 (which is stationary due to it being fastened to the barrier structure). [0093]The insert 500 preferably includes the same number of locking pins 190 as the number of locking slots 460 that are formed in the base 410. The locking pins 190 are also positioned such that all of the locking pins 190 can be aligned with the wider ends 462 of the respective locking slots 460, thereby allowing insertion of the pins 190 into the respective locking slots 460 and the subsequent rotation of the insert 500 relative to the base 410. [0094]As shown in FIG. 15, when the insert 500 is received within the base 410, the outer perimeter support 510 seats on the inner section 450 and in particular, the thickness of the outer perimeter support 510, the thickness of the outer section 440, and the recess of the inner section 450 are selected such that the top planar surfaces of the outer section 440 and outer perimeter support 510 are flush (lie substantially in the same plane) when the insert 500 is securely locked (mated to) with the base 410. In FIG. 15, the object that lies above the top surface of the outer section 440 is the decorative indicia (dragonfly) of the insert 500. [0095]The insert 500 is an example of a type of class of inserts that are not completely solid, as described above, and therefore, the underlying base (i.e., base 410) should be of a type that is complementary and best portrays the decorative indicia of the insert 500. In other words, the open nature of the base 410 compliments the open nature of the insert 500 and the user (observer) is able to see through to the support structure (e.g., a cabinet) to which the base 410 is mounted. [0096]FIGS. 18-21 illustrate another insert 600 that is configured to mate with the base 410. The insert 600 has an inverse design relative to the insert 500 in that the decorative indicia 610 of the insert 600 comprises a cutout (through hole in the form of a dragonfly). The areas surrounding the decorative indicia 610 are solid and define an insert body 605. As with the insert 500, the insert 600 includes one or more and preferably a plurality of locking pins 190 that are arranged about a perimeter of the insert body 605 and arranged to be received with the locking slots 460 are described herein. Since the base 410 has an open construction and the insert 600 has an open construction (decorative indicia cutout), the user (observer) is able to see through to the support structure (e.g., a cabinet) to which the base 410 is mounted. [0097]As previously discussed, the inserts described and illustrated herein are fully customizable and can be manufactured after the user selects the desired ornamental look (decorative indicia) for the insert. As mentioned previously, additive manufacturing processes are particularly suited for manufacturing the inserts since these processes are capable of receiving custom insert design instructions and can be used to only produce a small batch of inserts as opposed to mold manufacturing which requires a costly mold to be first prepared. [0098]FIGS. 22-25 illustrate another pull assembly 700 including an insert 710 that is configured to mate with a base 800. The insert 710 is similar to the other inserts described herein. The insert 710 is completely solid and includes one or more locking pins 190 extending outwardly from a rear surface (e.g., in the illustrated embodiment, there are two pins 190). A front surface of the insert 710 can and preferably does include decorative indicia 715 such as any of the indicia types disclosed herein. The illustrated insert 710 has a circular shape; however, as mentioned herein, it can have other shapes. [0099]The base 800 is similar to those described and illustrated herein. The base 800 includes a floor 810 with a raised perimeter lip 815 extending therearound. In the illustrated embodiment, the perimeter lip 815 has an annular shape. The perimeter lip 815 is thus raised relative to the floor 810. The floor 810 includes a plurality of locking slots 820 (that are similar to locking slots 160). Each locking slot 820 is formed entirely within the floor 810. Each locking slot 820 is defined by a pair of closed ends 822, 824. The locking slot 820 has an arcuate shape and the width of the locking slot 820 varies over the length of the locking slot 820 from the end 822 to the end 824. In particular, the width of the locking slot 820 progressively increases in the direction from the end 822 to the end 824. In other words, the end 822 represents a narrow end of the slot and the end 824 represents a wider end of the slot 820. The ends 822, 824 can be curved ends as shown. When more than one slot 820 is formed, the slots 820 can be located at least partially opposite one another. For example, the illustrated embodiment, the floor 810 includes two slots 820 that are arranged in one pair. [0100]The slots 820 are also arranged such that the narrow ends 822 face in the same circumferential direction in that, as shown, the narrow ends 822 are located counterclockwise to the wider ends 824. It will also be understood that the opposite is true in that the narrow ends 822 can be located clockwise to the wider ends 824. [0101]As with the other embodiment, the locations of the slots 820 and the locking pins 190 are arranged such that the locking pins 190 can be freely inserted into ends 824 of the slots 820. [0102]The illustrated floor 810 includes additional openings 817 for reducing the overall material being used to make the base 800. [0103]As in the other embodiments, the floor 810 is integrally connected to a stem 825 that includes a threaded bore 827 for receiving a fastener. [0104]The insert 710 and base 800 mate together as in the manner described herein with respect to the other embodiments in that a friction fit is formed therebetween. The locking pins 190 are inserted into the ends 824 of the slots 820 and the insert 710 is rotated relative to the base 800 (which is fixedly attached to a support) to cause
返回