权利要求:
1. A method for manufacturing a deflection member suitable for the production of fibrous webs, the method comprising the steps of: a. incorporating a monomer; b. incorporating a photoinitiator system; c. incorporating a photoinhibitor; d. incorporating a reinforcing member; e. combining the monomer, photoinitiator system, and photoinhibitor to form a photopolymer resin; f. contacting the reinforcing member with the photopolymer resin; g. exposing the photopolymer resin to a first wavelength; h. exposing the photopolymer resin to a second wavelength; and i. polymerizing the monomer to form a protuberance extending from the reinforcing member.
2. The method according to claim 1, wherein the protuberance is locked-on to the reinforcing member.
3. The method according to any of the preceding claims, wherein the monomer comprises one or more materials selected from the group consisting of di-functional monomers, tri-functional monomers, multi-functional monomers, monomethacrylates, dimethacrylates, trimethacrylates, multi-functional methacrylates, monoacrylates, diacrylates, triacrylates, multi-functional acrylates, epoxy acrylates, acrylate functional polyether polyols, methacrylate functional polyether polyols, acrylate functional polyester polyols, methacrylate functional polyester polyols, acrylate functional polyurethanes, methacrylate functional polyurethanes, prepolymers, oligomers, and combinations thereof; wherein the photoinitiator system comprises one or more materials selected from the group consisting of acylphosphine oxides, bis-acyl phospine oxides, camphorquinone, benzophenone, 7-diethylamino-3-thenoylcoumarin, alkyl ethers of benzoin, diphenoxy benzophenone, benzildimethylketal, halogenated functional benzophenones, amino functional benzophenones, benzils, benzimidazozles, 2-hydroxy-2-methylphenol-1-propanone, fluorenone, fluorenone derivatives, 2,2-diethoxyacetophenone, benzoin, 9,10-phenanthrenequinone, anthraquinone derivatives, 2-benzyl-2-N,N-dimethylamino-1-(4-morpholinophenyl)butanone, zanthone, zanthone derivatives, halogenated acetophenone, halogenated acetophenone derivatives, thioxanthone, thioxanthone derivatives, sulfonyl chlorides of aromatic compounds, diacetyl, furil, anisil, 4,4'-dichlorobenzil, 4,4'-dialkoxybenzil, phenylpropanedione, acylphosphine oxides, 2-(dimethylamino)ethyl methacrylate, diphenyliodonium hexafluorophosphate, diphenyliodonium chloride, ethyl-4-(dimethylamino)benzoate, and combinations thereof; and wherein the photoinhibitor comprises one or more materials selected from the group consisting of 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-biimidazole; hexaarylbiimidazole (HABI); bridged HABI; 2-(2-methoxyphenyl)-1-[2-(2-methoxyphenyl)-4,5-diphenyl-2H-imidazol-2-yl]-4,5-diphenyl-1H-imidazole; 2-(2-ethoxyphenyl)-1-[2-(2-ethoxyphenyl)-4,5-diphenyl-2H-imidazol-2-yl]-4,5-diphenyl-1H-imidazole; 2,2',4-tris-(2-Chlorophenyl)-5-(3,4-dimethoxyphenyl)-4',5'-diphenyl-1,1'-biimidazole; zinc dimethyl dithiocarbamate; zinc diethyl dithiocarbamate; zinc dibutyl dithiocarbamate; nickel dibutyl dithiocarbamate; zinc dibenzyl dithiocarbamate; tetramethylthiuram disulfide; tetraethylthiuram disulfide (TEDS); tetramethylthiuram monosulfide; tetrabenzylthiuram disulfide; tetraisobutylthiuram disulfide; dipentamethylene thiuram hexasulfide; N,N'-dimethyl N,N'-di(4-pyridinyl)thiuram disulfide; 3-Butenyl 2-(dodecylthiocarbonothioylthio)-2-methylpropionate; 4-Cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid; 4-Cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanol; Cyanomethyl dodecyl trithiocarbonate; Cyanomethyl [3-(trimethoxysilyl)propyl] trithiocarbonate; 2-Cyano-2-propyl dodecyl trithiocarbonate; S,S-Dibenzyl trithiocarbonate; 2-(Dodecylthiocarbonothioylthio)-2-methylpropionic acid; 2-(Dodecylthiocarbonothioylthio)-2-methylpropionic acid N-hydroxysuccinimide; Benzyl 1H-pyrrole-1-carbodithioate; Cyanomethyl diphenylcarbamodithioate; Cyanomethyl methyl(phenyl)carbamodithioate; Cyanomethyl methyl(4-pyridyl)carbamodithioate; 2-Cyanopropan-2-yl N-methyl-N-(pyridin-4-yl)carbamodithioate; Methyl 2-[methyl(4-pyridinyl)carbamothioylthio]propionate; 1-Succinimidyl-4-cyano-4-[N-methyl-N-(4-pyridyl)carbamothioylthio]pentanoate; Benzyl benzodithioate; Cyanomethyl benzodithioate; 4-Cyano-4-(phenylcarbonothioylthio)pentanoic acid; 4-Cyano-4-(phenylcarbonothioylthio)pentanoic acid N-succinimidyl ester; 2-Cyano-2-propyl benzodithioate; 2-Cyano-2-propyl 4-cyanobenzodithioate; Ethyl 2-(4-methoxyphenylcarbonothioylthio)acetate; 2-Phenyl-2-propyl benzodithioate; Cyanomethyl methyl(4-pyridyl)carbamodithioate; 2-Cyanopropan-2-yl N-methyl-N-(pyridin-4-yl)carbamodithioate; Methyl 2-[methyl(4-pyridinyl)carbamothioylthio]propionate; 1,1'-Bi-1H-imidazole; functional variants of any of the one or more materials; and combinations thereof.
4. The method according to any of the preceding claims, wherein the reinforcing member comprises one or more materials selected from the group consisting of woven fabric, nonwoven fabric, natural fibers, synthetic fibers, metallic fibers, carbon fibers, silicon carbide fibers, fiberglass, mineral fibers, polymer fibers, polyethylene terephthalate ("PET"), PBT polyester, phenol-formaldehyde (PF), polyvinyl chloride fiber (PVC), polyolefins (PP and PE), acrylic polyesters, aromatic polyamids (aramids), polytetrafluoroethylene, polyethylene (PE), polyphenylene sulfide ("PPS"); elastomers, and combinations thereof.
5. The method according to any of the preceding claims, wherein the first wavelength has a first range within about 100nm to 1400nm and results in photoinitiation of the photopolymer resin; wherein the second wavelength has a second range within about 100nm to 1400nm and results in photoinhibition of the photopolymer resin; and wherein the first range is different from the second range.
6. The method according to claim 5, wherein the first range and second range at least partially overlap.
7. The method according to any of the preceding claims, wherein a viscosity of the photopolymer resin is from about 100cP to about 2000000cP.
8. The method according to any of the preceding claims, further comprising polymerizing the monomer to form a plurality of protuberances to form a resinous framework.
9. The method of claim 8, wherein a portion of the plurality of protuberances are at a first elevation and wherein a second portion of the plurality of protuberances are at a second elevation, wherein the first elevation is different than the second elevation.
10. The method according to any of claims 8-9, wherein the first and second portions are separated from each other along an X axis and/or a Y axis of the deflection member.
11. The method according to any of the preceding claims, wherein the photopolymer resin comprises one or more of a photoabsorber, a stabilizer, and an excipient; wherein, when present, the photoabsorber comprises one or more materials selected from the group consisting of 2,3,5-t-amyl tetrahydro benzotriazole; benzotriazoles; polymerizable benzotriazoles; benzotriazole substituted in the 5-position of the benzo ring by a thio ether; benzotriazole substituted in the 5-position of the benzo ring by a alkylsulfonyl; benzotriazole substituted in the 5-position of the benzo ring by a phenylsulfonyl moiety; benzotriazole substituted in the 5-position of the benzo ring by an electron withdrawing group; 2-(2-hydroxy-3,5-di-alpha-cumylphenyl)-2H-benzotriazole; 5-chloro-2-(2-hydroxy-3-tert-butyl-5-methylphenyl)-2H-benzotriazole; 5-chloro-2-(2-hydroxy-3,5-di-tert-butylphenyl)-2H-benzotriazole; 2-(2-hydroxy-3,5-di-tert-amylphenyl)-2H-benzotriazole; 2-(2-hydroxy-3-alpha-cumyl-5-tert-octylphenyl)-2H-benzotriazole; 5-trifluoromethyl-2-(2-hydroxy-3-alpha-cumyl-5-tert-octylphenyl)-2H-benzotriazole; mixtures of benzotriazoles; titanium dioxide; yellow dyes; blue dyes; red dyes; green dyes; dyes; non-reactive dyes; food grade dyes; cosmetic dyes; azo dyes; 4-Chloro-7-nitrobenzofurazan; and combinations thereof; wherein, when present, the stabilizer comprises one or more materials selected from the group consisting of antioxidants; co-stabilizers; hindered amines; hindered phenolics; 2,6-di-tert-butylphenol; DTBP; methyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate; [Pentaerythrityl-tetrakis (3- (3 ' , 5 ' -di-tert . butyl-4- hydroxyphenyl) - propionate]; Irganox 1010 (BASF); bis(2,4-di-tert.-butyl-6-methylphenyl)-ethyl-phosphite; phosphoric acid, (2,4-di-butyl-6-methylphenyl)ethylester; Irgafos 38 (BASF); flame retardants; thermal stabilizers; N,N'-1,6-hexanediylbis[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenylpropanamide], Irganox 1098 (BASF); and combinations thereof; and wherein, when present, the excipient comprises one or more materials selected from the group consisting of volatile fluids; isoparaffin fluids; oils, mineral oils, metal oxides; fumed metal oxides; colloidal silicas, silicas, silicone dioxide; titanium dioxide; cellulose; nanocellulose; cellulosic nanoparticles; cellulosic nanofibers; bacterial cellulose; calcium sulfate particles; calcium sulfate whiskers; modified calcium sulfate particles; modified calcium sulfate whiskers, and combinations thereof.
12. The method according to any of the preceding claims, wherein the protuberance has a cross-sectional shape having curved sidewalls.
13. The method according to any of the preceding claims, the method further comprising forming a dead zone between the photopolymer resin and a vat comprising the photopolymer resin.
14. The method according to any of the preceding claims, wherein the protuberance comprises a plurality of continuous undefined layers.
15. The method according to any of the preceding claims, wherein the first wavelength is produced by a first radiation source, and the second wavelength is produced by a second radiation source.